掺杂 N、P 的碳上具有工程介孔的选择性核苷酸衍生 RuP,用于在肼氧化作用的辅助下高效制氢

IF 18.7 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
SusMat Pub Date : 2024-02-01 DOI:10.1002/sus2.186
Xiya Guan, Yu Sun, Simeng Zhao, Haibo Li, Suyuan Zeng, Qingxia Yao, Rui Li, Hongyan Chen, Konggang Qu
{"title":"掺杂 N、P 的碳上具有工程介孔的选择性核苷酸衍生 RuP,用于在肼氧化作用的辅助下高效制氢","authors":"Xiya Guan, Yu Sun, Simeng Zhao, Haibo Li, Suyuan Zeng, Qingxia Yao, Rui Li, Hongyan Chen, Konggang Qu","doi":"10.1002/sus2.186","DOIUrl":null,"url":null,"abstract":"Integrating hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) has an encouraging prospect for the energy‐saving hydrogen production, demanding the high‐performance bifunctional HER/HzOR electrocatalyst. Ruthenium phosphide/doped carbon composites have exhibited superior activity toward multiple electrocatalytic reactions. To explore the decent water‐soluble precursors containing both N and P elements is highly attractive to facilely prepare metal phosphide/doped carbon composites. Herein, as one kind ecofriendly biomolecules, adenine nucleotide was first employed to selectively fabricate the highly pure RuP nanoparticles embedded into porous N,P‐codoped carbons (RuP/PNPC) with a straightforward “mix‐and‐pyrolyze” approach. The newly prepared RuP/PNPC only requires 4.0 and −83.0 mV at 10 mA/cm2 separately in alkaline HER and HzOR, outperforming most of reported electrocatalysts, together with the outstanding neutral bifunctional performance. Furthermore, the two‐electrode alkaline and neutral overall hydrazine splitting both exhibit significant power‐efficiency superiority to the corresponding overall water splitting with the voltage difference of larger than 2 V, which can be also easily driven by the fuel cells and solar cells with considerable H2 generation. Our report innovates the N‐ and P‐bearing adenine nucleotide to effortlessly synthesize the high‐quality RuP/doped carbon composite catalysts, highly potential as a universal platform for metal phosphide‐related functional materials.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":null,"pages":null},"PeriodicalIF":18.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selectively nucleotide‐derived RuP on N,P‐codoped carbon with engineered mesopores for energy‐efficient hydrogen production assisted by hydrazine oxidation\",\"authors\":\"Xiya Guan, Yu Sun, Simeng Zhao, Haibo Li, Suyuan Zeng, Qingxia Yao, Rui Li, Hongyan Chen, Konggang Qu\",\"doi\":\"10.1002/sus2.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) has an encouraging prospect for the energy‐saving hydrogen production, demanding the high‐performance bifunctional HER/HzOR electrocatalyst. Ruthenium phosphide/doped carbon composites have exhibited superior activity toward multiple electrocatalytic reactions. To explore the decent water‐soluble precursors containing both N and P elements is highly attractive to facilely prepare metal phosphide/doped carbon composites. Herein, as one kind ecofriendly biomolecules, adenine nucleotide was first employed to selectively fabricate the highly pure RuP nanoparticles embedded into porous N,P‐codoped carbons (RuP/PNPC) with a straightforward “mix‐and‐pyrolyze” approach. The newly prepared RuP/PNPC only requires 4.0 and −83.0 mV at 10 mA/cm2 separately in alkaline HER and HzOR, outperforming most of reported electrocatalysts, together with the outstanding neutral bifunctional performance. Furthermore, the two‐electrode alkaline and neutral overall hydrazine splitting both exhibit significant power‐efficiency superiority to the corresponding overall water splitting with the voltage difference of larger than 2 V, which can be also easily driven by the fuel cells and solar cells with considerable H2 generation. Our report innovates the N‐ and P‐bearing adenine nucleotide to effortlessly synthesize the high‐quality RuP/doped carbon composite catalysts, highly potential as a universal platform for metal phosphide‐related functional materials.\",\"PeriodicalId\":29781,\"journal\":{\"name\":\"SusMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SusMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sus2.186\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.186","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将氢进化反应(HER)与肼氧化反应(HzOR)相结合,在节能制氢方面具有令人鼓舞的前景,这就需要高性能的 HER/HzOR 双功能电催化剂。磷化钌/掺杂碳复合材料在多种电催化反应中表现出卓越的活性。探索同时含有 N 和 P 元素的合适的水溶性前驱体对于轻松制备金属磷化物/掺杂碳复合材料极具吸引力。在本文中,腺嘌呤核苷酸作为一种生态友好型生物大分子,首先被用来选择性地制备高纯度的 RuP 纳米粒子,并将其嵌入多孔的 N、P-掺杂碳(RuP/PNPC)中。新制备的 RuP/PNPC 在 10 mA/cm2 的条件下,在碱性 HER 和 HzOR 中分别只需要 4.0 和 -83.0 mV 的电压,优于大多数已报道的电催化剂,同时具有出色的中性双功能性能。此外,在电压差大于 2 V 的情况下,双电极碱性和中性整体肼裂解的功率效率均明显优于相应的整体水裂解,这也很容易驱动燃料电池和太阳能电池产生大量的 H2。我们的报告创新性地利用含 N 和 P 的腺嘌呤核苷酸轻松合成了高质量的 RuP/掺杂碳复合催化剂,极有可能成为金属磷化相关功能材料的通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selectively nucleotide‐derived RuP on N,P‐codoped carbon with engineered mesopores for energy‐efficient hydrogen production assisted by hydrazine oxidation
Integrating hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) has an encouraging prospect for the energy‐saving hydrogen production, demanding the high‐performance bifunctional HER/HzOR electrocatalyst. Ruthenium phosphide/doped carbon composites have exhibited superior activity toward multiple electrocatalytic reactions. To explore the decent water‐soluble precursors containing both N and P elements is highly attractive to facilely prepare metal phosphide/doped carbon composites. Herein, as one kind ecofriendly biomolecules, adenine nucleotide was first employed to selectively fabricate the highly pure RuP nanoparticles embedded into porous N,P‐codoped carbons (RuP/PNPC) with a straightforward “mix‐and‐pyrolyze” approach. The newly prepared RuP/PNPC only requires 4.0 and −83.0 mV at 10 mA/cm2 separately in alkaline HER and HzOR, outperforming most of reported electrocatalysts, together with the outstanding neutral bifunctional performance. Furthermore, the two‐electrode alkaline and neutral overall hydrazine splitting both exhibit significant power‐efficiency superiority to the corresponding overall water splitting with the voltage difference of larger than 2 V, which can be also easily driven by the fuel cells and solar cells with considerable H2 generation. Our report innovates the N‐ and P‐bearing adenine nucleotide to effortlessly synthesize the high‐quality RuP/doped carbon composite catalysts, highly potential as a universal platform for metal phosphide‐related functional materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
4.20%
发文量
0
期刊介绍: SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信