基于双区块链的工业物联网异构数据多层分组联合学习方案

IF 6.9 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"基于双区块链的工业物联网异构数据多层分组联合学习方案","authors":"","doi":"10.1016/j.bcra.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Federated learning (FL) allows data owners to train neural networks together without sharing local data, allowing the industrial Internet of Things (IIoT) to share a variety of data. However, traditional FL frameworks suffer from data heterogeneity and outdated models. To address these issues, this paper proposes a dual-blockchain based multi-layer grouping federated learning (BMFL) architecture. BMFL divides the participant groups based on the training tasks, then realizes the model training by combining synchronous and asynchronous FL through the multi-layer grouping structure, and uses the model blockchain to record the characteristic tags of the global model, allowing group-manners to extract the model based on the feature requirements and solving the problem of data heterogeneity. In addition, to protect the privacy of the model gradient parameters and manage the key, the global model is stored in ciphertext, and the chameleon hash algorithm is used to perform the modification and management of the encrypted key on the key blockchain while keeping the block header hash unchanged. Finally, we evaluate the performance of BMFL on different public datasets and verify the practicality of the scheme with real fault datasets. The experimental results show that the proposed BMFL exhibits more stable and accurate convergence behavior than the classic FL algorithm, and the key revocation overhead time is reasonable.</p></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096720924000083/pdfft?md5=17c58876f9db0cb915d1b0b20cbe64c3&pid=1-s2.0-S2096720924000083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dual-blockchain based multi-layer grouping federated learning scheme for heterogeneous data in industrial IoT\",\"authors\":\"\",\"doi\":\"10.1016/j.bcra.2024.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated learning (FL) allows data owners to train neural networks together without sharing local data, allowing the industrial Internet of Things (IIoT) to share a variety of data. However, traditional FL frameworks suffer from data heterogeneity and outdated models. To address these issues, this paper proposes a dual-blockchain based multi-layer grouping federated learning (BMFL) architecture. BMFL divides the participant groups based on the training tasks, then realizes the model training by combining synchronous and asynchronous FL through the multi-layer grouping structure, and uses the model blockchain to record the characteristic tags of the global model, allowing group-manners to extract the model based on the feature requirements and solving the problem of data heterogeneity. In addition, to protect the privacy of the model gradient parameters and manage the key, the global model is stored in ciphertext, and the chameleon hash algorithm is used to perform the modification and management of the encrypted key on the key blockchain while keeping the block header hash unchanged. Finally, we evaluate the performance of BMFL on different public datasets and verify the practicality of the scheme with real fault datasets. The experimental results show that the proposed BMFL exhibits more stable and accurate convergence behavior than the classic FL algorithm, and the key revocation overhead time is reasonable.</p></div>\",\"PeriodicalId\":53141,\"journal\":{\"name\":\"Blockchain-Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096720924000083/pdfft?md5=17c58876f9db0cb915d1b0b20cbe64c3&pid=1-s2.0-S2096720924000083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blockchain-Research and Applications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096720924000083\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

联盟学习(FL)允许数据所有者在不共享本地数据的情况下共同训练神经网络,从而使工业物联网(IIoT)能够共享各种数据。然而,传统的联邦学习框架存在数据异构和模型过时的问题。为了解决这些问题,本文提出了一种基于双区块链的多层分组联合学习(BMFL)架构。BMFL 根据训练任务划分参与组,然后通过多层分组结构实现同步和异步 FL 相结合的模型训练,并利用模型区块链记录全局模型的特征标签,允许组员根据特征需求提取模型,解决了数据异构的问题。此外,为了保护模型梯度参数的隐私和管理密钥,全局模型以密文形式存储,并使用变色龙哈希算法对密钥区块链上的加密密钥进行修改和管理,同时保持区块头哈希值不变。最后,我们评估了 BMFL 在不同公共数据集上的性能,并通过真实故障数据集验证了该方案的实用性。实验结果表明,与经典的 FL 算法相比,所提出的 BMFL 表现出更稳定、更准确的收敛行为,而且密钥撤销开销时间合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-blockchain based multi-layer grouping federated learning scheme for heterogeneous data in industrial IoT

Federated learning (FL) allows data owners to train neural networks together without sharing local data, allowing the industrial Internet of Things (IIoT) to share a variety of data. However, traditional FL frameworks suffer from data heterogeneity and outdated models. To address these issues, this paper proposes a dual-blockchain based multi-layer grouping federated learning (BMFL) architecture. BMFL divides the participant groups based on the training tasks, then realizes the model training by combining synchronous and asynchronous FL through the multi-layer grouping structure, and uses the model blockchain to record the characteristic tags of the global model, allowing group-manners to extract the model based on the feature requirements and solving the problem of data heterogeneity. In addition, to protect the privacy of the model gradient parameters and manage the key, the global model is stored in ciphertext, and the chameleon hash algorithm is used to perform the modification and management of the encrypted key on the key blockchain while keeping the block header hash unchanged. Finally, we evaluate the performance of BMFL on different public datasets and verify the practicality of the scheme with real fault datasets. The experimental results show that the proposed BMFL exhibits more stable and accurate convergence behavior than the classic FL algorithm, and the key revocation overhead time is reasonable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信