乘法公设空间中乘法收缩的常见定点

Q3 Multidisciplinary
Jiping Song, Tianqi Luo, Lei Lei
{"title":"乘法公设空间中乘法收缩的常见定点","authors":"Jiping Song, Tianqi Luo, Lei Lei","doi":"10.1051/wujns/2024291013","DOIUrl":null,"url":null,"abstract":"The study delves into multiplicative contractions, exploring the existence and uniqueness of common fixed points for a weakly compatible pair of mappings. Those mappings adhere to specific multiplicative contraction conditions characterized by exponents expressed as fraction multiplicative metric spaces. It is noted that a metric can induce a multiplicative metric, and conversely, a multiplicative metric can give a rise to a metric on a nonempty set. As an application, another proof of the existence and uniqueness of the solution of a multiplicative initial problem is given.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":"338 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Fixed Points for Multiplicative Contractions in Multiplicative Metric Spaces\",\"authors\":\"Jiping Song, Tianqi Luo, Lei Lei\",\"doi\":\"10.1051/wujns/2024291013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study delves into multiplicative contractions, exploring the existence and uniqueness of common fixed points for a weakly compatible pair of mappings. Those mappings adhere to specific multiplicative contraction conditions characterized by exponents expressed as fraction multiplicative metric spaces. It is noted that a metric can induce a multiplicative metric, and conversely, a multiplicative metric can give a rise to a metric on a nonempty set. As an application, another proof of the existence and uniqueness of the solution of a multiplicative initial problem is given.\",\"PeriodicalId\":23976,\"journal\":{\"name\":\"Wuhan University Journal of Natural Sciences\",\"volume\":\"338 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wuhan University Journal of Natural Sciences\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/wujns/2024291013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2024291013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

该研究深入探讨了乘法收缩,探索了一对弱兼容映射的共同定点的存在性和唯一性。这些映射遵守特定的乘法收缩条件,其特征是以分数乘法度量空间表示的指数。我们注意到,一个度量可以引起一个乘法度量,反之,一个乘法度量可以引起一个非空集上的度量。作为应用,还给出了乘法初始问题解的存在性和唯一性的另一个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common Fixed Points for Multiplicative Contractions in Multiplicative Metric Spaces
The study delves into multiplicative contractions, exploring the existence and uniqueness of common fixed points for a weakly compatible pair of mappings. Those mappings adhere to specific multiplicative contraction conditions characterized by exponents expressed as fraction multiplicative metric spaces. It is noted that a metric can induce a multiplicative metric, and conversely, a multiplicative metric can give a rise to a metric on a nonempty set. As an application, another proof of the existence and uniqueness of the solution of a multiplicative initial problem is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信