宇宙 1408 号卫星的碎裂分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ronglan Wang , Shuai Feng , Xiaohua Yang , Shuangxing Cui , Bingxian Luo
{"title":"宇宙 1408 号卫星的碎裂分析","authors":"Ronglan Wang ,&nbsp;Shuai Feng ,&nbsp;Xiaohua Yang ,&nbsp;Shuangxing Cui ,&nbsp;Bingxian Luo","doi":"10.1016/j.jsse.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>On November 15, 2021, Russian dead satellite Cosmos 1408 broke up, which attracted widespread attention from media and researchers both domestic and foreign. This paper analyzed this event. According to TLEs released by US Space Surveillance Network, the orbit change of the parent body was analyzed. By using the orbital elements of breakup debris, the information such as breakup time and intensity was preliminarily determined. Finally, two spacecraft on LEO were selected to carry out the collision risk assessment. The impact of Cosmos 1408 breakup debris (CBD) on the international space station (ISS), and the China space station (CSS) was analyzed. The results show that the impact risk of the CBD on the ISS and CSS could not be ignored.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakup analysis of Cosmos 1408 Satellite\",\"authors\":\"Ronglan Wang ,&nbsp;Shuai Feng ,&nbsp;Xiaohua Yang ,&nbsp;Shuangxing Cui ,&nbsp;Bingxian Luo\",\"doi\":\"10.1016/j.jsse.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On November 15, 2021, Russian dead satellite Cosmos 1408 broke up, which attracted widespread attention from media and researchers both domestic and foreign. This paper analyzed this event. According to TLEs released by US Space Surveillance Network, the orbit change of the parent body was analyzed. By using the orbital elements of breakup debris, the information such as breakup time and intensity was preliminarily determined. Finally, two spacecraft on LEO were selected to carry out the collision risk assessment. The impact of Cosmos 1408 breakup debris (CBD) on the international space station (ISS), and the China space station (CSS) was analyzed. The results show that the impact risk of the CBD on the ISS and CSS could not be ignored.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468896724000089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896724000089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2021 年 11 月 15 日,俄罗斯宇宙 1408 号死亡卫星解体,引起了国内外媒体和研究人员的广泛关注。本文对这一事件进行了分析。根据美国太空监视网发布的 TLEs,分析了母体的轨道变化。利用碎裂碎片的轨道要素,初步确定了碎裂时间和强度等信息。最后,选择了低地球轨道上的两个航天器进行碰撞风险评估。分析了宇宙 1408 号分裂碎片(CBD)对国际空间站(ISS)和中国空间站(CSS)的影响。结果表明,CBD 对国际空间站和中国空间站的撞击风险不容忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breakup analysis of Cosmos 1408 Satellite

On November 15, 2021, Russian dead satellite Cosmos 1408 broke up, which attracted widespread attention from media and researchers both domestic and foreign. This paper analyzed this event. According to TLEs released by US Space Surveillance Network, the orbit change of the parent body was analyzed. By using the orbital elements of breakup debris, the information such as breakup time and intensity was preliminarily determined. Finally, two spacecraft on LEO were selected to carry out the collision risk assessment. The impact of Cosmos 1408 breakup debris (CBD) on the international space station (ISS), and the China space station (CSS) was analyzed. The results show that the impact risk of the CBD on the ISS and CSS could not be ignored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信