{"title":"评估粉煤灰对土壤性质和水稻发芽的影响:火电厂残渣利用研究","authors":"Biswajit Paul, Abhishek Samanta, Nandan Bhattacharyya","doi":"10.31830/2454-1761.2024.cr-949","DOIUrl":null,"url":null,"abstract":"India has a power capacity of 4,02,817 MW, with over half coming from coal-based thermal power plants like the Kolaghat Thermal Power Plant (KTPP), West Bengal, India. These plants produce harmful fly ash, requiring safe disposal. KTPP alone generated 0.5921 million tons of fly ash in 2020-21, managed using ash ponds. Concerns have arisen regarding contamination of nearby agricultural fields, impacting rice cultivation. The objective of the study was to understand how fly ash affects soil and seed germination and emphasizes the importance of making careful decisions when using industrial residues in agriculture to ensure sustainable and responsible practices that prioritize environmental health and plant well-being.Samples were collected from areas near KTPP, and plant growth substrates were prepared by mixing control soil with varying fly ash concentrations. The study was conducted between 15 February and 19 May 2023 in PnaskuraBanamali College (Autonomous), Purba Medinipur, West Bengal, India. The physical and chemical properties of these substrates were analyzed, and rice seed germination studies were carried out over 30 days. The subsequent transplantation and growth assessments included measuring shoots and roots, analyzing leaf chlorophyll and carotenoids, and conducting statistical evaluations. The experiments were triplicated, and statistical analyses using SPSS 16 indicated statistical significance at p less than 0.05.The study helps to understand how fly ash affects soil and seed germination, revealing both positive and negative effects on soil properties and plant growth. It emphasizes the need for careful decision-making when using industrial residues in agriculture to ensure sustainable and responsible practices that prioritize both environmental health and plant well-being.\n","PeriodicalId":10786,"journal":{"name":"Crop research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the effect of fly ash on soil properties and germination of rice (Oryza sativa): A study on the utilization of thermal power plant residue\",\"authors\":\"Biswajit Paul, Abhishek Samanta, Nandan Bhattacharyya\",\"doi\":\"10.31830/2454-1761.2024.cr-949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"India has a power capacity of 4,02,817 MW, with over half coming from coal-based thermal power plants like the Kolaghat Thermal Power Plant (KTPP), West Bengal, India. These plants produce harmful fly ash, requiring safe disposal. KTPP alone generated 0.5921 million tons of fly ash in 2020-21, managed using ash ponds. Concerns have arisen regarding contamination of nearby agricultural fields, impacting rice cultivation. The objective of the study was to understand how fly ash affects soil and seed germination and emphasizes the importance of making careful decisions when using industrial residues in agriculture to ensure sustainable and responsible practices that prioritize environmental health and plant well-being.Samples were collected from areas near KTPP, and plant growth substrates were prepared by mixing control soil with varying fly ash concentrations. The study was conducted between 15 February and 19 May 2023 in PnaskuraBanamali College (Autonomous), Purba Medinipur, West Bengal, India. The physical and chemical properties of these substrates were analyzed, and rice seed germination studies were carried out over 30 days. The subsequent transplantation and growth assessments included measuring shoots and roots, analyzing leaf chlorophyll and carotenoids, and conducting statistical evaluations. The experiments were triplicated, and statistical analyses using SPSS 16 indicated statistical significance at p less than 0.05.The study helps to understand how fly ash affects soil and seed germination, revealing both positive and negative effects on soil properties and plant growth. It emphasizes the need for careful decision-making when using industrial residues in agriculture to ensure sustainable and responsible practices that prioritize both environmental health and plant well-being.\\n\",\"PeriodicalId\":10786,\"journal\":{\"name\":\"Crop research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop research\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.31830/2454-1761.2024.cr-949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop research","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.31830/2454-1761.2024.cr-949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the effect of fly ash on soil properties and germination of rice (Oryza sativa): A study on the utilization of thermal power plant residue
India has a power capacity of 4,02,817 MW, with over half coming from coal-based thermal power plants like the Kolaghat Thermal Power Plant (KTPP), West Bengal, India. These plants produce harmful fly ash, requiring safe disposal. KTPP alone generated 0.5921 million tons of fly ash in 2020-21, managed using ash ponds. Concerns have arisen regarding contamination of nearby agricultural fields, impacting rice cultivation. The objective of the study was to understand how fly ash affects soil and seed germination and emphasizes the importance of making careful decisions when using industrial residues in agriculture to ensure sustainable and responsible practices that prioritize environmental health and plant well-being.Samples were collected from areas near KTPP, and plant growth substrates were prepared by mixing control soil with varying fly ash concentrations. The study was conducted between 15 February and 19 May 2023 in PnaskuraBanamali College (Autonomous), Purba Medinipur, West Bengal, India. The physical and chemical properties of these substrates were analyzed, and rice seed germination studies were carried out over 30 days. The subsequent transplantation and growth assessments included measuring shoots and roots, analyzing leaf chlorophyll and carotenoids, and conducting statistical evaluations. The experiments were triplicated, and statistical analyses using SPSS 16 indicated statistical significance at p less than 0.05.The study helps to understand how fly ash affects soil and seed germination, revealing both positive and negative effects on soil properties and plant growth. It emphasizes the need for careful decision-making when using industrial residues in agriculture to ensure sustainable and responsible practices that prioritize both environmental health and plant well-being.