CFCN:基于泰勒扩展理论和多视角学习的 HLA 肽预测模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Rao, Bing Han, Leyi Wei, Zeyu Zhang, Xinbo Jiang, Balachandran Manavalan
{"title":"CFCN:基于泰勒扩展理论和多视角学习的 HLA 肽预测模型","authors":"B. Rao, Bing Han, Leyi Wei, Zeyu Zhang, Xinbo Jiang, Balachandran Manavalan","doi":"10.2174/0115748936299044240202100019","DOIUrl":null,"url":null,"abstract":"\n\nWith the increasing development of biotechnology, many cancer solutions\nhave been proposed nowadays. In recent years, Neo-peptides-based methods have made significant\ncontributions, with an essential prerequisite of bindings between peptides and HLA molecules.\nHowever, the binding is hard to predict, and the accuracy is expected to improve further.\n\n\n\nTherefore, we propose the Crossed Feature Correction Network (CFCN) with deep\nlearning method, which can automatically extract and adaptively learn the discriminative features\nin HLA-peptide binding, in order to make more accurate predictions on HLA-peptide binding\ntasks. With the fancy structure of encoding and feature extracting process for peptides, as well as\nthe feature fusion process between fine-grained and coarse-grained level, it shows many advantages\non given tasks.\n\n\n\nThe experiment illustrates that CFCN achieves better performances overall, compared\nwith other fancy models in many aspects.\n\n\n\nIn addition, we also consider to use multi-view learning methods for the feature fusion\nprocess, in order to find out further relations among binding features. Eventually, we encapsulate\nour model as a useful tool for further research on binding tasks.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"420 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFCN: An HLA-peptide Prediction Model based on Taylor Extension\\nTheory and Multi-view Learning\",\"authors\":\"B. Rao, Bing Han, Leyi Wei, Zeyu Zhang, Xinbo Jiang, Balachandran Manavalan\",\"doi\":\"10.2174/0115748936299044240202100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nWith the increasing development of biotechnology, many cancer solutions\\nhave been proposed nowadays. In recent years, Neo-peptides-based methods have made significant\\ncontributions, with an essential prerequisite of bindings between peptides and HLA molecules.\\nHowever, the binding is hard to predict, and the accuracy is expected to improve further.\\n\\n\\n\\nTherefore, we propose the Crossed Feature Correction Network (CFCN) with deep\\nlearning method, which can automatically extract and adaptively learn the discriminative features\\nin HLA-peptide binding, in order to make more accurate predictions on HLA-peptide binding\\ntasks. With the fancy structure of encoding and feature extracting process for peptides, as well as\\nthe feature fusion process between fine-grained and coarse-grained level, it shows many advantages\\non given tasks.\\n\\n\\n\\nThe experiment illustrates that CFCN achieves better performances overall, compared\\nwith other fancy models in many aspects.\\n\\n\\n\\nIn addition, we also consider to use multi-view learning methods for the feature fusion\\nprocess, in order to find out further relations among binding features. Eventually, we encapsulate\\nour model as a useful tool for further research on binding tasks.\\n\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"420 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936299044240202100019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936299044240202100019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

随着生物技术的不断发展,目前已提出了许多癌症解决方案。因此,我们提出了采用深度学习方法的交叉特征校正网络(Crossed Feature Correction Network,CFCN),它可以自动提取和自适应学习HLA-多肽结合中的判别特征,从而对HLA-多肽结合任务做出更准确的预测。此外,我们还考虑在特征融合过程中使用多视角学习方法,以进一步发现结合特征之间的关系。最终,我们将我们的模型封装成一个有用的工具,用于进一步研究绑定任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFCN: An HLA-peptide Prediction Model based on Taylor Extension Theory and Multi-view Learning
With the increasing development of biotechnology, many cancer solutions have been proposed nowadays. In recent years, Neo-peptides-based methods have made significant contributions, with an essential prerequisite of bindings between peptides and HLA molecules. However, the binding is hard to predict, and the accuracy is expected to improve further. Therefore, we propose the Crossed Feature Correction Network (CFCN) with deep learning method, which can automatically extract and adaptively learn the discriminative features in HLA-peptide binding, in order to make more accurate predictions on HLA-peptide binding tasks. With the fancy structure of encoding and feature extracting process for peptides, as well as the feature fusion process between fine-grained and coarse-grained level, it shows many advantages on given tasks. The experiment illustrates that CFCN achieves better performances overall, compared with other fancy models in many aspects. In addition, we also consider to use multi-view learning methods for the feature fusion process, in order to find out further relations among binding features. Eventually, we encapsulate our model as a useful tool for further research on binding tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信