M. Christwardana, Satrio Kuntolaksono, A. A. Septevani, H. Hadiyanto
{"title":"基于淀粉-卡拉胶的低成本膜渗透特性及其在酵母微生物燃料电池中的应用","authors":"M. Christwardana, Satrio Kuntolaksono, A. A. Septevani, H. Hadiyanto","doi":"10.61435/ijred.2024.59160","DOIUrl":null,"url":null,"abstract":"Microbial fuel cells (MFCs) are an innovative method that generates sustainable electricity by exploiting the metabolic processes of microorganisms. The membrane that divides the anode and cathode chambers is an important component of MFCs. Commercially available membranes, such as Nafion, are both costly, not sustainable, and harmful to the environment. In this study, a low-cost alternative membrane for MFCs based on a starch-carrageenan blend (SCB-LCM) was synthesized. The SCB-LCM membrane was created by combining starch and carrageenan and demonstrated a high dehydration rate of 98.87 % over six hours. SEM analysis revealed a smooth surface morphology with no pores on the membrane surface. The performance of SCB-LCM membrane-based MFCs was evaluated and compared to that of other membranes, including Nafion 117 and Nafion 212. All membranes tested over 25 hours lost significant weight, with SCB-LCM losing the least. The maximum power density (MPD) of the SCB-LCM MFCs was 15.77 ± 4.34 mW/m2, indicating comparable performance to commercial membranes. Moreover, the cost-to-power ratio for MFCs employing SCB-LCM was the lowest (0.03 USD.m2/mW) when compared to other membranes, indicating that SCB-LCM might be a viable and cost-effective alternative to Nafion in MFCs. These SCB-LCM findings lay the groundwork for future research into low-cost and sustainable membrane for MFC technologies. ","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"510 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Starch – carrageenan based low-cost membrane permeability characteristic and its application for yeast microbial fuel cells\",\"authors\":\"M. Christwardana, Satrio Kuntolaksono, A. A. Septevani, H. Hadiyanto\",\"doi\":\"10.61435/ijred.2024.59160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial fuel cells (MFCs) are an innovative method that generates sustainable electricity by exploiting the metabolic processes of microorganisms. The membrane that divides the anode and cathode chambers is an important component of MFCs. Commercially available membranes, such as Nafion, are both costly, not sustainable, and harmful to the environment. In this study, a low-cost alternative membrane for MFCs based on a starch-carrageenan blend (SCB-LCM) was synthesized. The SCB-LCM membrane was created by combining starch and carrageenan and demonstrated a high dehydration rate of 98.87 % over six hours. SEM analysis revealed a smooth surface morphology with no pores on the membrane surface. The performance of SCB-LCM membrane-based MFCs was evaluated and compared to that of other membranes, including Nafion 117 and Nafion 212. All membranes tested over 25 hours lost significant weight, with SCB-LCM losing the least. The maximum power density (MPD) of the SCB-LCM MFCs was 15.77 ± 4.34 mW/m2, indicating comparable performance to commercial membranes. Moreover, the cost-to-power ratio for MFCs employing SCB-LCM was the lowest (0.03 USD.m2/mW) when compared to other membranes, indicating that SCB-LCM might be a viable and cost-effective alternative to Nafion in MFCs. These SCB-LCM findings lay the groundwork for future research into low-cost and sustainable membrane for MFC technologies. \",\"PeriodicalId\":14200,\"journal\":{\"name\":\"International Journal of Renewable Energy Development\",\"volume\":\"510 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61435/ijred.2024.59160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61435/ijred.2024.59160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Starch – carrageenan based low-cost membrane permeability characteristic and its application for yeast microbial fuel cells
Microbial fuel cells (MFCs) are an innovative method that generates sustainable electricity by exploiting the metabolic processes of microorganisms. The membrane that divides the anode and cathode chambers is an important component of MFCs. Commercially available membranes, such as Nafion, are both costly, not sustainable, and harmful to the environment. In this study, a low-cost alternative membrane for MFCs based on a starch-carrageenan blend (SCB-LCM) was synthesized. The SCB-LCM membrane was created by combining starch and carrageenan and demonstrated a high dehydration rate of 98.87 % over six hours. SEM analysis revealed a smooth surface morphology with no pores on the membrane surface. The performance of SCB-LCM membrane-based MFCs was evaluated and compared to that of other membranes, including Nafion 117 and Nafion 212. All membranes tested over 25 hours lost significant weight, with SCB-LCM losing the least. The maximum power density (MPD) of the SCB-LCM MFCs was 15.77 ± 4.34 mW/m2, indicating comparable performance to commercial membranes. Moreover, the cost-to-power ratio for MFCs employing SCB-LCM was the lowest (0.03 USD.m2/mW) when compared to other membranes, indicating that SCB-LCM might be a viable and cost-effective alternative to Nafion in MFCs. These SCB-LCM findings lay the groundwork for future research into low-cost and sustainable membrane for MFC technologies.