Naser S Sanoussi, M. Hammami, N. Feki, Tarek Belgasam, M. Abbes, Mohamed Haddar
{"title":"利用实验设计技术确定正齿轮的最佳摩擦系数","authors":"Naser S Sanoussi, M. Hammami, N. Feki, Tarek Belgasam, M. Abbes, Mohamed Haddar","doi":"10.1177/13506501231223073","DOIUrl":null,"url":null,"abstract":"The friction occurring between the teeth of gears is a significant contributor to energy loss in gear drives. Factors like the load, speed, and coefficient of friction (µ) play a crucial role in determining the extent of frictional losses in gears. The coefficient of friction (µ) is a complex function influenced by various tribological parameters, including rolling, and sliding velocities, normal load at the tooth contact zone, oil temperature, and contact surface roughness. To analyze the impact of design and operating parameters on the coefficient of friction, a comprehensive statistical parametric approach was employed, combining numerical and statistical methods. The study employed a design of experiments methodology to numerically examine the impact of various tribological factors on the coefficient of friction. This methodology facilitated the identification of primary effects and crucial factors that have a significant impact on the variable µ. The findings derived from the computational models were subsequently compared with the discoveries of pre-existing investigations that includes both experimental and theoretical approaches. The proposed method represents a powerful tool for understanding the relationship and correlation between major tribological factors and the coefficient of friction. By employing this approach, it becomes possible to identify optimized tribological parameters. This information is valuable in improving the design and operation of gear systems, with the aim of reducing energy loss due to friction and enhancing overall efficiency.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing design of experiments techniques to determine the optimal coefficient of friction in spur gears\",\"authors\":\"Naser S Sanoussi, M. Hammami, N. Feki, Tarek Belgasam, M. Abbes, Mohamed Haddar\",\"doi\":\"10.1177/13506501231223073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The friction occurring between the teeth of gears is a significant contributor to energy loss in gear drives. Factors like the load, speed, and coefficient of friction (µ) play a crucial role in determining the extent of frictional losses in gears. The coefficient of friction (µ) is a complex function influenced by various tribological parameters, including rolling, and sliding velocities, normal load at the tooth contact zone, oil temperature, and contact surface roughness. To analyze the impact of design and operating parameters on the coefficient of friction, a comprehensive statistical parametric approach was employed, combining numerical and statistical methods. The study employed a design of experiments methodology to numerically examine the impact of various tribological factors on the coefficient of friction. This methodology facilitated the identification of primary effects and crucial factors that have a significant impact on the variable µ. The findings derived from the computational models were subsequently compared with the discoveries of pre-existing investigations that includes both experimental and theoretical approaches. The proposed method represents a powerful tool for understanding the relationship and correlation between major tribological factors and the coefficient of friction. By employing this approach, it becomes possible to identify optimized tribological parameters. This information is valuable in improving the design and operation of gear systems, with the aim of reducing energy loss due to friction and enhancing overall efficiency.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231223073\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231223073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Utilizing design of experiments techniques to determine the optimal coefficient of friction in spur gears
The friction occurring between the teeth of gears is a significant contributor to energy loss in gear drives. Factors like the load, speed, and coefficient of friction (µ) play a crucial role in determining the extent of frictional losses in gears. The coefficient of friction (µ) is a complex function influenced by various tribological parameters, including rolling, and sliding velocities, normal load at the tooth contact zone, oil temperature, and contact surface roughness. To analyze the impact of design and operating parameters on the coefficient of friction, a comprehensive statistical parametric approach was employed, combining numerical and statistical methods. The study employed a design of experiments methodology to numerically examine the impact of various tribological factors on the coefficient of friction. This methodology facilitated the identification of primary effects and crucial factors that have a significant impact on the variable µ. The findings derived from the computational models were subsequently compared with the discoveries of pre-existing investigations that includes both experimental and theoretical approaches. The proposed method represents a powerful tool for understanding the relationship and correlation between major tribological factors and the coefficient of friction. By employing this approach, it becomes possible to identify optimized tribological parameters. This information is valuable in improving the design and operation of gear systems, with the aim of reducing energy loss due to friction and enhancing overall efficiency.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).