PM2.5 中的多环芳烃 (PAHs):利用分子诊断比对汽车车间环境空气中的多环芳烃 (PAHs) 进行定量和来源预测研究

IF 1.1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Gregory E. Onaiwu, Ikhazuagbe H. Ifijen
{"title":"PM2.5 中的多环芳烃 (PAHs):利用分子诊断比对汽车车间环境空气中的多环芳烃 (PAHs) 进行定量和来源预测研究","authors":"Gregory E. Onaiwu,&nbsp;Ikhazuagbe H. Ifijen","doi":"10.1007/s44273-024-00027-y","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been linked to health concerns, including cancer. Automobile workshops are significant contributors to PAH emissions due to their operations. Hence, this investigation aimed to identify and quantify the sources of PM2.5-bound PAHs in the ambient air of automobile workshops in Benin City, Nigeria, using molecular diagnostic ratios. PM2.5 samples were collected from 60 automobiles over 1 year, during the rainy (April to November) and dry (December to March) seasons of 2019. Sample collection utilized a low-volume air sampler with quartz filter paper, and extraction was performed using a 1:1 mixture of acetone and dichloromethane. The analysis involved an HP Agilent Technology 6890 Gas Chromatography (GC) system with a flame ionization detector. The annual average concentrations of PM2.5-bound PAHs in Benin City were 269.87 ± 249.32 ng/m<sup>3</sup> (dry season) and 216.30 ± 204.89 ng/m<sup>3</sup> (wet season). Molecular diagnostic ratios, such as Fl/(Fl + Py), An/(An + Phe), BaP/(BaP + Chry), BbF/BkF, InP/(InP + BghiP), and BaA/(BaA + Chr), aided in identifying PAH sources. Gasoline combustion, diesel combustion, traffic emissions, and emissions from automobile panel welders were found to be the primary sources of PAHs near vehicle workshops. These findings provide crucial insights for developing effective strategies to reduce emissions and protect public health in the air surrounding automobile workshops in Benin City.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00027-y.pdf","citationCount":"0","resultStr":"{\"title\":\"PM2.5-bound polycyclic aromatic hydrocarbons (PAHs): quantification and source prediction studies in the ambient air of automobile workshop using the molecular diagnostic ratio\",\"authors\":\"Gregory E. Onaiwu,&nbsp;Ikhazuagbe H. Ifijen\",\"doi\":\"10.1007/s44273-024-00027-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The presence of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been linked to health concerns, including cancer. Automobile workshops are significant contributors to PAH emissions due to their operations. Hence, this investigation aimed to identify and quantify the sources of PM2.5-bound PAHs in the ambient air of automobile workshops in Benin City, Nigeria, using molecular diagnostic ratios. PM2.5 samples were collected from 60 automobiles over 1 year, during the rainy (April to November) and dry (December to March) seasons of 2019. Sample collection utilized a low-volume air sampler with quartz filter paper, and extraction was performed using a 1:1 mixture of acetone and dichloromethane. The analysis involved an HP Agilent Technology 6890 Gas Chromatography (GC) system with a flame ionization detector. The annual average concentrations of PM2.5-bound PAHs in Benin City were 269.87 ± 249.32 ng/m<sup>3</sup> (dry season) and 216.30 ± 204.89 ng/m<sup>3</sup> (wet season). Molecular diagnostic ratios, such as Fl/(Fl + Py), An/(An + Phe), BaP/(BaP + Chry), BbF/BkF, InP/(InP + BghiP), and BaA/(BaA + Chr), aided in identifying PAH sources. Gasoline combustion, diesel combustion, traffic emissions, and emissions from automobile panel welders were found to be the primary sources of PAHs near vehicle workshops. These findings provide crucial insights for developing effective strategies to reduce emissions and protect public health in the air surrounding automobile workshops in Benin City.</p></div>\",\"PeriodicalId\":45358,\"journal\":{\"name\":\"Asian Journal of Atmospheric Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44273-024-00027-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44273-024-00027-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00027-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气中的多环芳烃 (PAH) 与癌症等健康问题有关。汽车维修厂的运营是多环芳烃排放的重要来源。因此,本调查旨在利用分子诊断比率确定和量化尼日利亚贝宁市汽车修理厂环境空气中与 PM2.5 结合的多环芳烃的来源。在 2019 年的雨季(4 月至 11 月)和旱季(12 月至 3 月),对 60 辆汽车进行了为期一年的 PM2.5 样品采集。样品采集使用了带有石英滤纸的低容量空气采样器,并使用丙酮和二氯甲烷 1:1 的混合物进行提取。分析使用了配备火焰离子化检测器的 HP Agilent Technology 6890 气相色谱(GC)系统。贝宁市的 PM2.5 多环芳烃年平均浓度为 269.87 ± 249.32 纳克/立方米(旱季)和 216.30 ± 204.89 纳克/立方米(雨季)。分子诊断比率(如 Fl/(Fl + Py)、An/(An + Phe)、BaP/(BaP + Chry)、BbF/BkF、InP/(InP + BghiP)和 BaA/(BaA + Chr))有助于确定 PAH 来源。研究发现,汽油燃烧、柴油燃烧、交通排放和汽车面板焊接工的排放是汽车车间附近多环芳烃的主要来源。这些发现为制定有效的减排策略和保护贝宁市汽车修理厂周围空气中的公众健康提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PM2.5-bound polycyclic aromatic hydrocarbons (PAHs): quantification and source prediction studies in the ambient air of automobile workshop using the molecular diagnostic ratio

The presence of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been linked to health concerns, including cancer. Automobile workshops are significant contributors to PAH emissions due to their operations. Hence, this investigation aimed to identify and quantify the sources of PM2.5-bound PAHs in the ambient air of automobile workshops in Benin City, Nigeria, using molecular diagnostic ratios. PM2.5 samples were collected from 60 automobiles over 1 year, during the rainy (April to November) and dry (December to March) seasons of 2019. Sample collection utilized a low-volume air sampler with quartz filter paper, and extraction was performed using a 1:1 mixture of acetone and dichloromethane. The analysis involved an HP Agilent Technology 6890 Gas Chromatography (GC) system with a flame ionization detector. The annual average concentrations of PM2.5-bound PAHs in Benin City were 269.87 ± 249.32 ng/m3 (dry season) and 216.30 ± 204.89 ng/m3 (wet season). Molecular diagnostic ratios, such as Fl/(Fl + Py), An/(An + Phe), BaP/(BaP + Chry), BbF/BkF, InP/(InP + BghiP), and BaA/(BaA + Chr), aided in identifying PAH sources. Gasoline combustion, diesel combustion, traffic emissions, and emissions from automobile panel welders were found to be the primary sources of PAHs near vehicle workshops. These findings provide crucial insights for developing effective strategies to reduce emissions and protect public health in the air surrounding automobile workshops in Benin City.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Atmospheric Environment
Asian Journal of Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.80
自引率
6.70%
发文量
22
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信