苯和苯胺的结构平衡构型:第一原理研究

Krishna Bahadur Rai, R. Ghimire, Chandra Dhakal, K. Pudasainee, Bijay Siwakoti
{"title":"苯和苯胺的结构平衡构型:第一原理研究","authors":"Krishna Bahadur Rai, R. Ghimire, Chandra Dhakal, K. Pudasainee, Bijay Siwakoti","doi":"10.3126/jncs.v44i1.62675","DOIUrl":null,"url":null,"abstract":"The present work describes the equilibrium configuration of aromatic compounds like benzene and aniline molecules using the first principle (ab initio) calculation method implemented by the Gaussian 98 programs. The ground state energy for benzene and aniline molecules obtained using the DFT (B3LYP) calculation is lower than that obtained with the HF+MP2 method which, in turn, is lower than that obtained with the HF calculation. The calculated values of bond length, bond angle, and dihedral angle for these molecules with HF, HF+MP2, and DFT (B3LYP) levels of calculation agree with each other within 2%. The calculated C-C and C-H bond lengths of the benzene molecule are 1.394 Å and 1.084 Å at DFT (B3LYP) calculation and these values agree well with the experimental value of 1.395 Å and 1.084 Å for C-C and C-H bond. Also, the calculated value of bond angles and dihedral angles for benzene molecule are 120° and 180° respectively. For aniline molecule, the C-N and N-H bond lengths are found 1.378 Å and 1.003 Å respectively at DFT (B3LYP) calculation, which agrees with the experimental value of C-N and N-H bond lengths with values of 1.475 Å and 1.008 Å within 7% respectively. For the benzene molecule, there is a symmetrical charge distribution. The total dipole moment of the benzene molecule is zero, indicating that the centers of positive and negative charge coincide with each other such that the benzene molecule is non-polar whereas aniline is a polar molecule with a dipole moment of 1.9828 Debye","PeriodicalId":16483,"journal":{"name":"Journal of Nepal Chemical Society","volume":"64 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Equilibrium Configuration of Benzene and Aniline: A First-Principles Study\",\"authors\":\"Krishna Bahadur Rai, R. Ghimire, Chandra Dhakal, K. Pudasainee, Bijay Siwakoti\",\"doi\":\"10.3126/jncs.v44i1.62675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work describes the equilibrium configuration of aromatic compounds like benzene and aniline molecules using the first principle (ab initio) calculation method implemented by the Gaussian 98 programs. The ground state energy for benzene and aniline molecules obtained using the DFT (B3LYP) calculation is lower than that obtained with the HF+MP2 method which, in turn, is lower than that obtained with the HF calculation. The calculated values of bond length, bond angle, and dihedral angle for these molecules with HF, HF+MP2, and DFT (B3LYP) levels of calculation agree with each other within 2%. The calculated C-C and C-H bond lengths of the benzene molecule are 1.394 Å and 1.084 Å at DFT (B3LYP) calculation and these values agree well with the experimental value of 1.395 Å and 1.084 Å for C-C and C-H bond. Also, the calculated value of bond angles and dihedral angles for benzene molecule are 120° and 180° respectively. For aniline molecule, the C-N and N-H bond lengths are found 1.378 Å and 1.003 Å respectively at DFT (B3LYP) calculation, which agrees with the experimental value of C-N and N-H bond lengths with values of 1.475 Å and 1.008 Å within 7% respectively. For the benzene molecule, there is a symmetrical charge distribution. The total dipole moment of the benzene molecule is zero, indicating that the centers of positive and negative charge coincide with each other such that the benzene molecule is non-polar whereas aniline is a polar molecule with a dipole moment of 1.9828 Debye\",\"PeriodicalId\":16483,\"journal\":{\"name\":\"Journal of Nepal Chemical Society\",\"volume\":\"64 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Chemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jncs.v44i1.62675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Chemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jncs.v44i1.62675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用高斯 98 程序实现的第一原理(ab initio)计算方法,描述了苯和苯胺分子等芳香族化合物的平衡构型。利用 DFT(B3LYP)计算得出的苯和苯胺分子的基态能低于 HF+MP2 方法得出的基态能,而后者又低于 HF 计算得出的基态能。用高频、高频+MP2 和 DFT (B3LYP) 水平计算的这些分子的键长、键角和二面角的计算值相互吻合,误差在 2% 以内。在 DFT (B3LYP) 计算中,苯分子的 C-C 和 C-H 键长度分别为 1.394 Å 和 1.084 Å,这些值与 C-C 和 C-H 键的实验值 1.395 Å 和 1.084 Å 非常吻合。此外,苯分子的键角和二面角的计算值分别为 120°和 180°。苯胺分子的 C-N 和 N-H 键长在 DFT(B3LYP)计算中分别为 1.378 Å 和 1.003 Å,与 C-N 和 N-H 键长的实验值分别为 1.475 Å 和 1.008 Å 相吻合,误差在 7% 以内。苯分子的电荷分布是对称的。苯分子的总偶极矩为零,表明正负电荷中心相互重合,因此苯分子是非极性分子,而苯胺是极性分子,其偶极矩为 1.9828 Debye。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Equilibrium Configuration of Benzene and Aniline: A First-Principles Study
The present work describes the equilibrium configuration of aromatic compounds like benzene and aniline molecules using the first principle (ab initio) calculation method implemented by the Gaussian 98 programs. The ground state energy for benzene and aniline molecules obtained using the DFT (B3LYP) calculation is lower than that obtained with the HF+MP2 method which, in turn, is lower than that obtained with the HF calculation. The calculated values of bond length, bond angle, and dihedral angle for these molecules with HF, HF+MP2, and DFT (B3LYP) levels of calculation agree with each other within 2%. The calculated C-C and C-H bond lengths of the benzene molecule are 1.394 Å and 1.084 Å at DFT (B3LYP) calculation and these values agree well with the experimental value of 1.395 Å and 1.084 Å for C-C and C-H bond. Also, the calculated value of bond angles and dihedral angles for benzene molecule are 120° and 180° respectively. For aniline molecule, the C-N and N-H bond lengths are found 1.378 Å and 1.003 Å respectively at DFT (B3LYP) calculation, which agrees with the experimental value of C-N and N-H bond lengths with values of 1.475 Å and 1.008 Å within 7% respectively. For the benzene molecule, there is a symmetrical charge distribution. The total dipole moment of the benzene molecule is zero, indicating that the centers of positive and negative charge coincide with each other such that the benzene molecule is non-polar whereas aniline is a polar molecule with a dipole moment of 1.9828 Debye
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信