Natali Levi‐Soskin, Stephan Marwedel, Ahmad Jbara, D. Dori
{"title":"用计算能力增强概念模型:可执行综合建模的方法论","authors":"Natali Levi‐Soskin, Stephan Marwedel, Ahmad Jbara, D. Dori","doi":"10.1002/sys.21750","DOIUrl":null,"url":null,"abstract":"The lack of a common executable modeling framework that integrates systems engineering, software design, and other engineering domains is a major impediment to seamless product development processes. Our research aims to overcome this system‐software modeling gap by integrating computational, software‐related, and model execution capabilities into OPM‐based conceptual modeling, resulting in a holistic unified executable quantitative‐qualitative modeling framework. The gap is overcome via a Methodical Approach to Executable Integrative Modeling—MAXIM, an extension of OPM ISO 19450:2015, a standardization approvement given on 2015. We present the principles of MAXIM and demonstrate its operation within OPCloud—a web‐based collaborative conceptual OPM modeling framework. As a proof‐of‐concept, a model of an Airbus civil aircraft landing gear braking system is constructed and executed. Using MAXIM, engineers from five domains can collaborate at the very early phase of the system development and jointly construct a unified model that fuses qualitative and quantitative aspects of the various disciplines. This case study illustrates an important first step towards satisfying the critical and growing need to integrate systems engineering with software computations into a unified framework that enables a smooth transition from high‐level architecting to detailed, discipline‐oriented design. Such a framework is a key to agile yet robust future development of software‐intensive systems.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing conceptual models with computational capabilities: A methodical approach to executable integrative modeling\",\"authors\":\"Natali Levi‐Soskin, Stephan Marwedel, Ahmad Jbara, D. Dori\",\"doi\":\"10.1002/sys.21750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of a common executable modeling framework that integrates systems engineering, software design, and other engineering domains is a major impediment to seamless product development processes. Our research aims to overcome this system‐software modeling gap by integrating computational, software‐related, and model execution capabilities into OPM‐based conceptual modeling, resulting in a holistic unified executable quantitative‐qualitative modeling framework. The gap is overcome via a Methodical Approach to Executable Integrative Modeling—MAXIM, an extension of OPM ISO 19450:2015, a standardization approvement given on 2015. We present the principles of MAXIM and demonstrate its operation within OPCloud—a web‐based collaborative conceptual OPM modeling framework. As a proof‐of‐concept, a model of an Airbus civil aircraft landing gear braking system is constructed and executed. Using MAXIM, engineers from five domains can collaborate at the very early phase of the system development and jointly construct a unified model that fuses qualitative and quantitative aspects of the various disciplines. This case study illustrates an important first step towards satisfying the critical and growing need to integrate systems engineering with software computations into a unified framework that enables a smooth transition from high‐level architecting to detailed, discipline‐oriented design. Such a framework is a key to agile yet robust future development of software‐intensive systems.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21750\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21750","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Enhancing conceptual models with computational capabilities: A methodical approach to executable integrative modeling
The lack of a common executable modeling framework that integrates systems engineering, software design, and other engineering domains is a major impediment to seamless product development processes. Our research aims to overcome this system‐software modeling gap by integrating computational, software‐related, and model execution capabilities into OPM‐based conceptual modeling, resulting in a holistic unified executable quantitative‐qualitative modeling framework. The gap is overcome via a Methodical Approach to Executable Integrative Modeling—MAXIM, an extension of OPM ISO 19450:2015, a standardization approvement given on 2015. We present the principles of MAXIM and demonstrate its operation within OPCloud—a web‐based collaborative conceptual OPM modeling framework. As a proof‐of‐concept, a model of an Airbus civil aircraft landing gear braking system is constructed and executed. Using MAXIM, engineers from five domains can collaborate at the very early phase of the system development and jointly construct a unified model that fuses qualitative and quantitative aspects of the various disciplines. This case study illustrates an important first step towards satisfying the critical and growing need to integrate systems engineering with software computations into a unified framework that enables a smooth transition from high‐level architecting to detailed, discipline‐oriented design. Such a framework is a key to agile yet robust future development of software‐intensive systems.
期刊介绍:
Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle.
Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.