Jiantao Zhao, Ya Chen, Lida Shen, Haozhe Pang, Ziyang Yu, Kai Zhou, Dazhi Huang, Dongsheng Wang
{"title":"在添加剂制造的铝合金上通过喷射电沉积一步制备高性能 Ni-MoS2 自润滑涂层","authors":"Jiantao Zhao, Ya Chen, Lida Shen, Haozhe Pang, Ziyang Yu, Kai Zhou, Dazhi Huang, Dongsheng Wang","doi":"10.1177/09544054241232316","DOIUrl":null,"url":null,"abstract":"Composite coatings with solid lubricants can improve the tribological performance of aluminum alloy parts prepared by Laser Powder Bed Fusion (LPBF). In this study, Ni-MoS2 self-lubricating composite coatings were one-step prepared on additive manufactured aluminum alloy surface via jet electrodeposition. The properties and lubrication performance of the coatings prepared using composite electrolyte with different MoS2 particle diameters and concentrations were investigated. The lubrication mechanism of the composite coating was discussed. The results showed that 0.8 μm MoS2 had less agglomeration than 80 nm, resulting in a uniform surface. The lubrication performance of the composite coating was affected by MoS2 particles content and coating hardness. With the increase of MoS2 concentration in the composite electrolyte, the friction coefficient and wear rate decreased, and achieved the best lubrication performance of 0.12 friction coefficient and 0.11 mg/m wear rate when MoS2 composite electrolyte is 5 g/l and MoS2 is 0.8 μm. However, the addition of soft MoS2 decreased the coating hardness, lower hardness will cause lubrication failure.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"21 3","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step preparation of high performance Ni-MoS2 self-lubricating coatings via jet electrodeposition on additive manufactured aluminum alloy\",\"authors\":\"Jiantao Zhao, Ya Chen, Lida Shen, Haozhe Pang, Ziyang Yu, Kai Zhou, Dazhi Huang, Dongsheng Wang\",\"doi\":\"10.1177/09544054241232316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite coatings with solid lubricants can improve the tribological performance of aluminum alloy parts prepared by Laser Powder Bed Fusion (LPBF). In this study, Ni-MoS2 self-lubricating composite coatings were one-step prepared on additive manufactured aluminum alloy surface via jet electrodeposition. The properties and lubrication performance of the coatings prepared using composite electrolyte with different MoS2 particle diameters and concentrations were investigated. The lubrication mechanism of the composite coating was discussed. The results showed that 0.8 μm MoS2 had less agglomeration than 80 nm, resulting in a uniform surface. The lubrication performance of the composite coating was affected by MoS2 particles content and coating hardness. With the increase of MoS2 concentration in the composite electrolyte, the friction coefficient and wear rate decreased, and achieved the best lubrication performance of 0.12 friction coefficient and 0.11 mg/m wear rate when MoS2 composite electrolyte is 5 g/l and MoS2 is 0.8 μm. However, the addition of soft MoS2 decreased the coating hardness, lower hardness will cause lubrication failure.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"21 3\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241232316\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241232316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
One-step preparation of high performance Ni-MoS2 self-lubricating coatings via jet electrodeposition on additive manufactured aluminum alloy
Composite coatings with solid lubricants can improve the tribological performance of aluminum alloy parts prepared by Laser Powder Bed Fusion (LPBF). In this study, Ni-MoS2 self-lubricating composite coatings were one-step prepared on additive manufactured aluminum alloy surface via jet electrodeposition. The properties and lubrication performance of the coatings prepared using composite electrolyte with different MoS2 particle diameters and concentrations were investigated. The lubrication mechanism of the composite coating was discussed. The results showed that 0.8 μm MoS2 had less agglomeration than 80 nm, resulting in a uniform surface. The lubrication performance of the composite coating was affected by MoS2 particles content and coating hardness. With the increase of MoS2 concentration in the composite electrolyte, the friction coefficient and wear rate decreased, and achieved the best lubrication performance of 0.12 friction coefficient and 0.11 mg/m wear rate when MoS2 composite electrolyte is 5 g/l and MoS2 is 0.8 μm. However, the addition of soft MoS2 decreased the coating hardness, lower hardness will cause lubrication failure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.