Aiman Rakhmetova, Gulzhamila Meiirova, D. Balpanova, Ainash Baidullayeva, Dina Nurmakhanova
{"title":"利用神经教育学元素创建虚拟仿真器,在高等教育中深入学习化学","authors":"Aiman Rakhmetova, Gulzhamila Meiirova, D. Balpanova, Ainash Baidullayeva, Dina Nurmakhanova","doi":"10.3926/jotse.2532","DOIUrl":null,"url":null,"abstract":"This study investigates the efficacy of incorporating neuropedagogical elements into virtual simulators for advanced chemistry education in universities. Utilizing a mixed-method approach, it uses questionnaires completed by 50 organic chemistry students. These questionnaires included both general and Likert scale questions, focusing on students' experiences with the PhET Interactive Simulation. The results highlight the positive impact of neuropedagogy on students' learning attitudes, cognitive abilities, and skill development, particularly in areas like critical thinking, analytical skills, and social competencies. A significant portion of students reported enhanced educational outcomes: 76% observed improved training effectiveness, 88% better understood the subject, and 96% found the virtual simulator-based learning more engaging. Furthermore, the study notes improvements in students' problem-solving abilities (68%), logical reasoning (92%), and comprehension of chemical processes (94%). These findings emphasize the value of integrating neuroscience principles in chemical education, potentially benefiting both tertiary and secondary education sectors. They indicate the necessity for educational adaptation in line with interdisciplinary research in cognitive and neurological sciences. This research not only serves as a valuable resource for chemistry teachers but also sets the stage for future empirical studies exploring neuroscience's role in teacher education. The study underscores the importance of further investigation into how teachers implement neuropedagogical techniques and the effectiveness of such applications, advocating for continuous development in educational methodologies.","PeriodicalId":37919,"journal":{"name":"Journal of Technology and Science Education","volume":"17 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of elements of neuropedagogy in the creation of virtual simulators for in-depth study of chemistry in higher education\",\"authors\":\"Aiman Rakhmetova, Gulzhamila Meiirova, D. Balpanova, Ainash Baidullayeva, Dina Nurmakhanova\",\"doi\":\"10.3926/jotse.2532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the efficacy of incorporating neuropedagogical elements into virtual simulators for advanced chemistry education in universities. Utilizing a mixed-method approach, it uses questionnaires completed by 50 organic chemistry students. These questionnaires included both general and Likert scale questions, focusing on students' experiences with the PhET Interactive Simulation. The results highlight the positive impact of neuropedagogy on students' learning attitudes, cognitive abilities, and skill development, particularly in areas like critical thinking, analytical skills, and social competencies. A significant portion of students reported enhanced educational outcomes: 76% observed improved training effectiveness, 88% better understood the subject, and 96% found the virtual simulator-based learning more engaging. Furthermore, the study notes improvements in students' problem-solving abilities (68%), logical reasoning (92%), and comprehension of chemical processes (94%). These findings emphasize the value of integrating neuroscience principles in chemical education, potentially benefiting both tertiary and secondary education sectors. They indicate the necessity for educational adaptation in line with interdisciplinary research in cognitive and neurological sciences. This research not only serves as a valuable resource for chemistry teachers but also sets the stage for future empirical studies exploring neuroscience's role in teacher education. The study underscores the importance of further investigation into how teachers implement neuropedagogical techniques and the effectiveness of such applications, advocating for continuous development in educational methodologies.\",\"PeriodicalId\":37919,\"journal\":{\"name\":\"Journal of Technology and Science Education\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Technology and Science Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3926/jotse.2532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology and Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jotse.2532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
The use of elements of neuropedagogy in the creation of virtual simulators for in-depth study of chemistry in higher education
This study investigates the efficacy of incorporating neuropedagogical elements into virtual simulators for advanced chemistry education in universities. Utilizing a mixed-method approach, it uses questionnaires completed by 50 organic chemistry students. These questionnaires included both general and Likert scale questions, focusing on students' experiences with the PhET Interactive Simulation. The results highlight the positive impact of neuropedagogy on students' learning attitudes, cognitive abilities, and skill development, particularly in areas like critical thinking, analytical skills, and social competencies. A significant portion of students reported enhanced educational outcomes: 76% observed improved training effectiveness, 88% better understood the subject, and 96% found the virtual simulator-based learning more engaging. Furthermore, the study notes improvements in students' problem-solving abilities (68%), logical reasoning (92%), and comprehension of chemical processes (94%). These findings emphasize the value of integrating neuroscience principles in chemical education, potentially benefiting both tertiary and secondary education sectors. They indicate the necessity for educational adaptation in line with interdisciplinary research in cognitive and neurological sciences. This research not only serves as a valuable resource for chemistry teachers but also sets the stage for future empirical studies exploring neuroscience's role in teacher education. The study underscores the importance of further investigation into how teachers implement neuropedagogical techniques and the effectiveness of such applications, advocating for continuous development in educational methodologies.
期刊介绍:
JOTSE is an international Journal aiming at publishing interdisciplinary research within the university education framework and it is especially focused on the fields of Technology and Science. JOTSE serves as an international forum of reference for Engineering education. Teaching innovation oriented, the journal will be issued twice per year (every 6 months) and will include original works, research and projects dealing with the new learning methodologies and new learning supporting tools related to the wide range of disciplines the Engineering studies and profession involve. In addition, JOTSE will also issue special numbers on more technological themes from the different areas of general interest in the industrial world, which may be used as practical cases in classroom tuition and practice. Thereby, getting the working world reality closer to the learning at University. Among other areas of interest, our Journal will be focused on: 1. Education 2.General Science (Physics, Chemistry, Maths,…) 3.Telecommunications 4.Electricity and Electronics 5.Industrial Computing (Digital, Analogic, Robotics, Ergonomics) 6.Aerospatial (aircraft design and building, engines, materials) 7. Automotive (automotive materials, automobile emissions).