隐藏截断双变量指数分布的贝叶斯推断及其应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Indranil Ghosh, H. Ng, Kipum Kim, Seong W. Kim
{"title":"隐藏截断双变量指数分布的贝叶斯推断及其应用","authors":"Indranil Ghosh, H. Ng, Kipum Kim, Seong W. Kim","doi":"10.3390/axioms13030140","DOIUrl":null,"url":null,"abstract":"In many real-life scenarios, one variable is observed only if the other concomitant variable or the set of concomitant variables (in the multivariate scenario) is truncated from below, above, or from a two-sided approach. Hidden truncation models have been applied to analyze data when bivariate or multivariate observations are subject to some form of truncation. While the statistical inference for hidden truncation models (truncation from above) under the frequentist and the Bayesian paradigms has been adequately discussed in the literature, the estimation of a two-sided hidden truncation model under the Bayesian framework has not yet been discussed. In this paper, we consider the Bayesian inference for a general two-sided hidden truncation model based on the Arnold–Strauss bivariate exponential distribution. In addition, a Bayesian model selection approach based on the Bayes factor to select between models without truncation, with truncation from below, from above, and two-sided truncation is also explored. An extensive simulation study is carried out for varying parameter choices under the conjugate prior set-up. For illustrative purposes, a real-life dataset is re-analyzed to demonstrate the applicability of the proposed methodology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference for a Hidden Truncated Bivariate Exponential Distribution with Applications\",\"authors\":\"Indranil Ghosh, H. Ng, Kipum Kim, Seong W. Kim\",\"doi\":\"10.3390/axioms13030140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many real-life scenarios, one variable is observed only if the other concomitant variable or the set of concomitant variables (in the multivariate scenario) is truncated from below, above, or from a two-sided approach. Hidden truncation models have been applied to analyze data when bivariate or multivariate observations are subject to some form of truncation. While the statistical inference for hidden truncation models (truncation from above) under the frequentist and the Bayesian paradigms has been adequately discussed in the literature, the estimation of a two-sided hidden truncation model under the Bayesian framework has not yet been discussed. In this paper, we consider the Bayesian inference for a general two-sided hidden truncation model based on the Arnold–Strauss bivariate exponential distribution. In addition, a Bayesian model selection approach based on the Bayes factor to select between models without truncation, with truncation from below, from above, and two-sided truncation is also explored. An extensive simulation study is carried out for varying parameter choices under the conjugate prior set-up. For illustrative purposes, a real-life dataset is re-analyzed to demonstrate the applicability of the proposed methodology.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13030140\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13030140","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在现实生活中的许多情况下,只有当另一个伴随变量或伴随变量集(在多变量情况下)被从下向上或从双面截断时,才能观测到一个变量。当二元或多元观测数据受到某种形式的截断时,隐性截断模型就被用来分析数据。虽然文献中已经充分讨论了频繁主义和贝叶斯范式下的隐性截断模型(从上截断)的统计推断,但尚未讨论贝叶斯框架下的双侧隐性截断模型的估计。在本文中,我们考虑了基于 Arnold-Strauss 双变量指数分布的一般双侧隐藏截断模型的贝叶斯推断。此外,还探讨了一种基于贝叶斯因子的贝叶斯模型选择方法,以在无截断、从下截断、从上截断和双侧截断模型之间进行选择。在共轭先验设置下,对不同的参数选择进行了广泛的模拟研究。为了说明问题,对一个真实数据集进行了重新分析,以证明所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Inference for a Hidden Truncated Bivariate Exponential Distribution with Applications
In many real-life scenarios, one variable is observed only if the other concomitant variable or the set of concomitant variables (in the multivariate scenario) is truncated from below, above, or from a two-sided approach. Hidden truncation models have been applied to analyze data when bivariate or multivariate observations are subject to some form of truncation. While the statistical inference for hidden truncation models (truncation from above) under the frequentist and the Bayesian paradigms has been adequately discussed in the literature, the estimation of a two-sided hidden truncation model under the Bayesian framework has not yet been discussed. In this paper, we consider the Bayesian inference for a general two-sided hidden truncation model based on the Arnold–Strauss bivariate exponential distribution. In addition, a Bayesian model selection approach based on the Bayes factor to select between models without truncation, with truncation from below, from above, and two-sided truncation is also explored. An extensive simulation study is carried out for varying parameter choices under the conjugate prior set-up. For illustrative purposes, a real-life dataset is re-analyzed to demonstrate the applicability of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信