Hiva Hedayati, Asadollah Mofidi, Abdullah Al-Fadhli, Maryam Aramesh
{"title":"在机械加工的极端条件下使用的固体润滑剂:最新发展和应用综述","authors":"Hiva Hedayati, Asadollah Mofidi, Abdullah Al-Fadhli, Maryam Aramesh","doi":"10.3390/lubricants12030069","DOIUrl":null,"url":null,"abstract":"Contacting bodies in extreme environments are prone to severe wear and failure due to friction and seizure, which are associated with significant thermal and mechanical loads. This phenomenon greatly impacts the economy since most essential components encounter these challenges during machining, an unavoidable step in most manufacturing processes. In machining, stress can reach 4 GPa, and temperatures can exceed 1000 °C at the cutting zone. Severe seizure and friction are the primary causes of tool and workpiece failures. Liquid lubricants are popular in machining for combatting heat and friction; however, concerns about their environmental impact are growing, as two-thirds of the 40 million tons used annually are discarded and they produce other environmental and safety issues. Despite their overall efficacy, these lubricants also have limitations, including ineffectiveness in reducing seizure at the tool/chip interface and susceptibility to degradation at high temperatures. There is therefore a push towards solid lubricants, which promise a reduced environmental footprint, better friction management, and improved machining outcomes but also face challenges under extreme machining conditions. This review aims to provide a thorough insight into solid lubricant use in machining, discussing their mechanisms, effectiveness, constraints, and potential to boost productivity and environmental sustainability.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid Lubricants Used in Extreme Conditions Experienced in Machining: A Comprehensive Review of Recent Developments and Applications\",\"authors\":\"Hiva Hedayati, Asadollah Mofidi, Abdullah Al-Fadhli, Maryam Aramesh\",\"doi\":\"10.3390/lubricants12030069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contacting bodies in extreme environments are prone to severe wear and failure due to friction and seizure, which are associated with significant thermal and mechanical loads. This phenomenon greatly impacts the economy since most essential components encounter these challenges during machining, an unavoidable step in most manufacturing processes. In machining, stress can reach 4 GPa, and temperatures can exceed 1000 °C at the cutting zone. Severe seizure and friction are the primary causes of tool and workpiece failures. Liquid lubricants are popular in machining for combatting heat and friction; however, concerns about their environmental impact are growing, as two-thirds of the 40 million tons used annually are discarded and they produce other environmental and safety issues. Despite their overall efficacy, these lubricants also have limitations, including ineffectiveness in reducing seizure at the tool/chip interface and susceptibility to degradation at high temperatures. There is therefore a push towards solid lubricants, which promise a reduced environmental footprint, better friction management, and improved machining outcomes but also face challenges under extreme machining conditions. This review aims to provide a thorough insight into solid lubricant use in machining, discussing their mechanisms, effectiveness, constraints, and potential to boost productivity and environmental sustainability.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030069\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Solid Lubricants Used in Extreme Conditions Experienced in Machining: A Comprehensive Review of Recent Developments and Applications
Contacting bodies in extreme environments are prone to severe wear and failure due to friction and seizure, which are associated with significant thermal and mechanical loads. This phenomenon greatly impacts the economy since most essential components encounter these challenges during machining, an unavoidable step in most manufacturing processes. In machining, stress can reach 4 GPa, and temperatures can exceed 1000 °C at the cutting zone. Severe seizure and friction are the primary causes of tool and workpiece failures. Liquid lubricants are popular in machining for combatting heat and friction; however, concerns about their environmental impact are growing, as two-thirds of the 40 million tons used annually are discarded and they produce other environmental and safety issues. Despite their overall efficacy, these lubricants also have limitations, including ineffectiveness in reducing seizure at the tool/chip interface and susceptibility to degradation at high temperatures. There is therefore a push towards solid lubricants, which promise a reduced environmental footprint, better friction management, and improved machining outcomes but also face challenges under extreme machining conditions. This review aims to provide a thorough insight into solid lubricant use in machining, discussing their mechanisms, effectiveness, constraints, and potential to boost productivity and environmental sustainability.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding