论某些 Beurling Zeta 函数的普遍性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrius Geštautas, A. Laurinčikas
{"title":"论某些 Beurling Zeta 函数的普遍性","authors":"Andrius Geštautas, A. Laurinčikas","doi":"10.3390/axioms13030145","DOIUrl":null,"url":null,"abstract":"Let P be the set of generalized prime numbers, and ζP(s), s=σ+it, denote the Beurling zeta-function associated with P. In the paper, we consider the approximation of analytic functions by using shifts ζP(s+iτ), τ∈R. We assume the classical axioms for the number of generalized integers and the mean of the generalized von Mangoldt function, the linear independence of the set {logp:p∈P}, and the existence of a bounded mean square for ζP(s). Under the above hypotheses, we obtain the universality of the function ζP(s). This means that the set of shifts ζP(s+iτ) approximating a given analytic function defined on a certain strip σ^<σ<1 has a positive lower density. This result opens a new chapter in the theory of Beurling zeta functions. Moreover, it supports the Linnik–Ibragimov conjecture on the universality of Dirichlet series. For the proof, a probabilistic approach is applied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Universality of Some Beurling Zeta-Functions\",\"authors\":\"Andrius Geštautas, A. Laurinčikas\",\"doi\":\"10.3390/axioms13030145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let P be the set of generalized prime numbers, and ζP(s), s=σ+it, denote the Beurling zeta-function associated with P. In the paper, we consider the approximation of analytic functions by using shifts ζP(s+iτ), τ∈R. We assume the classical axioms for the number of generalized integers and the mean of the generalized von Mangoldt function, the linear independence of the set {logp:p∈P}, and the existence of a bounded mean square for ζP(s). Under the above hypotheses, we obtain the universality of the function ζP(s). This means that the set of shifts ζP(s+iτ) approximating a given analytic function defined on a certain strip σ^<σ<1 has a positive lower density. This result opens a new chapter in the theory of Beurling zeta functions. Moreover, it supports the Linnik–Ibragimov conjecture on the universality of Dirichlet series. For the proof, a probabilistic approach is applied.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13030145\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13030145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

让 P 是广义素数集,ζP(s), s=σ+it 表示与 P 相关的 Beurling zeta 函数。在本文中,我们考虑使用移项 ζP(s+iτ),τ∈R 来逼近解析函数。我们假设广义整数的个数和广义 von Mangoldt 函数的均值、集合 {logp:p∈P} 的线性独立性以及 ζP(s)存在有界均方的经典公理。根据上述假设,我们得到了函数 ζP(s)的普遍性。这意味着近似于定义在某条带 σ^<σ<1 上的给定解析函数的移项集合 ζP(s+iτ)具有正的低密度。这一结果揭开了贝林 zeta 函数理论的新篇章。此外,它还支持了关于狄利克列普遍性的林尼克-伊布拉吉莫夫猜想。为了证明这一点,我们采用了概率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Universality of Some Beurling Zeta-Functions
Let P be the set of generalized prime numbers, and ζP(s), s=σ+it, denote the Beurling zeta-function associated with P. In the paper, we consider the approximation of analytic functions by using shifts ζP(s+iτ), τ∈R. We assume the classical axioms for the number of generalized integers and the mean of the generalized von Mangoldt function, the linear independence of the set {logp:p∈P}, and the existence of a bounded mean square for ζP(s). Under the above hypotheses, we obtain the universality of the function ζP(s). This means that the set of shifts ζP(s+iτ) approximating a given analytic function defined on a certain strip σ^<σ<1 has a positive lower density. This result opens a new chapter in the theory of Beurling zeta functions. Moreover, it supports the Linnik–Ibragimov conjecture on the universality of Dirichlet series. For the proof, a probabilistic approach is applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信