{"title":"三电 \"静电镊子\",用于操纵飞秒激光加工制备的润滑易滑表面上的液滴","authors":"Jiale Yong, Xinlei Li, Youdi Hu, Yubin Peng, Zilong Cheng, Tianyu Xu, Chaowei Wang, Dong Wu","doi":"10.1088/2631-7990/ad2cdf","DOIUrl":null,"url":null,"abstract":"\n “Electrostatic tweezer” is a promising tool for droplet manipulation, but it faces many limitations in manipulating droplet on superhydrophobic surfaces. Here, we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces based on triboelectric electrostatic tweezers (TETs). The TET manipulation of droplets on a slippery surface shows many advantages over the electrostatic droplet manipulation on a superhydrophobic surface. The electrostatic field induces the redistribution of the charges inside the neutral droplet, which makes the triboelectric charged rod drive the droplet to move forward under the electrostatic force. Positively or negatively charged droplets can also be moved by TET based on electrostatic attraction and repulsion. TET enables manipulate droplets under diverse conditions, such as anti-gravity climb, the motion of suspended droplets, corrosive liquids, low-surface-tension liquids (e.g., ethanol with a surface tension of 22.3 mN/m), different droplet volumes (from 100 nL to 0.5 mL), passing through narrow slits, sliding over damaged areas, on various solid substrates, and even droplets in an enclosed system. Various droplet-related applications, such as motion guidance, motion switching, droplet-based microreactions, surface cleaning, surface defogging, liquid sorting, and cell labeling can be easily achieved with TET.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triboelectric “Electrostatic Tweezers” for Manipulating Droplets on Lubricated Slippery Surfaces Prepared by Femtosecond Laser Processing\",\"authors\":\"Jiale Yong, Xinlei Li, Youdi Hu, Yubin Peng, Zilong Cheng, Tianyu Xu, Chaowei Wang, Dong Wu\",\"doi\":\"10.1088/2631-7990/ad2cdf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n “Electrostatic tweezer” is a promising tool for droplet manipulation, but it faces many limitations in manipulating droplet on superhydrophobic surfaces. Here, we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces based on triboelectric electrostatic tweezers (TETs). The TET manipulation of droplets on a slippery surface shows many advantages over the electrostatic droplet manipulation on a superhydrophobic surface. The electrostatic field induces the redistribution of the charges inside the neutral droplet, which makes the triboelectric charged rod drive the droplet to move forward under the electrostatic force. Positively or negatively charged droplets can also be moved by TET based on electrostatic attraction and repulsion. TET enables manipulate droplets under diverse conditions, such as anti-gravity climb, the motion of suspended droplets, corrosive liquids, low-surface-tension liquids (e.g., ethanol with a surface tension of 22.3 mN/m), different droplet volumes (from 100 nL to 0.5 mL), passing through narrow slits, sliding over damaged areas, on various solid substrates, and even droplets in an enclosed system. Various droplet-related applications, such as motion guidance, motion switching, droplet-based microreactions, surface cleaning, surface defogging, liquid sorting, and cell labeling can be easily achieved with TET.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad2cdf\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad2cdf","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Triboelectric “Electrostatic Tweezers” for Manipulating Droplets on Lubricated Slippery Surfaces Prepared by Femtosecond Laser Processing
“Electrostatic tweezer” is a promising tool for droplet manipulation, but it faces many limitations in manipulating droplet on superhydrophobic surfaces. Here, we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces based on triboelectric electrostatic tweezers (TETs). The TET manipulation of droplets on a slippery surface shows many advantages over the electrostatic droplet manipulation on a superhydrophobic surface. The electrostatic field induces the redistribution of the charges inside the neutral droplet, which makes the triboelectric charged rod drive the droplet to move forward under the electrostatic force. Positively or negatively charged droplets can also be moved by TET based on electrostatic attraction and repulsion. TET enables manipulate droplets under diverse conditions, such as anti-gravity climb, the motion of suspended droplets, corrosive liquids, low-surface-tension liquids (e.g., ethanol with a surface tension of 22.3 mN/m), different droplet volumes (from 100 nL to 0.5 mL), passing through narrow slits, sliding over damaged areas, on various solid substrates, and even droplets in an enclosed system. Various droplet-related applications, such as motion guidance, motion switching, droplet-based microreactions, surface cleaning, surface defogging, liquid sorting, and cell labeling can be easily achieved with TET.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.