M.Phaseolina的分子特征及其利用农用化学品和T.

IF 1.1 Q3 AGRICULTURE, MULTIDISCIPLINARY
K. A. Sido, W. A. Hassan
{"title":"M.Phaseolina的分子特征及其利用农用化学品和T.","authors":"K. A. Sido, W. A. Hassan","doi":"10.36103/4p59fb72","DOIUrl":null,"url":null,"abstract":"Systemic Acquired Resistance (SAR) induced by agrochemicals of chitosan (CH) and salicylic acid (SA) at (25, 50 and 100 ppm) , in addition to a biocontrol agent of  T. harzianum (Th) at 4 ×106  were examined against M. phaseolina  the causal agent of charcoal rot of sunflower. The results depended on estimation of diseases severity and microsclerotia density in the soil. Thus, the seeds immersion in CH 75 ppm for 6 h., gave the highest and considerable reduction (p=0.05) in disease severity by 48.25% and reduced microsclerotia survived in the soil up to 70%. Application of SA at 50 and 75 ppm proved an obvious reduction of charcoal rot severity by up to 39% and 37% for both concentrations, respectively and not varied with Th. The results also confirmed that CH at 75 ppm revealed significant reduction 40.63% in disease severity and similarized with SA at same concentration. However, the lowest dose of SA at 25 ppm realized the highest reduction of micro sclerotia density by 80.28 % compared to 74.91% when used CH at 75 ppm. For molecular identification of a pathogen Polymerase Chain Reaction (PCR) using ITS4 and ITS5 universal primers were applied to amplify and sequence of DNA for six isolates of M. phaseolina viz., OL901219, OL636051, OL901220, OL901204, OL636050 and OL636053 compared for identity of rDNA sequence according to NCBI GenBank databases by BLAST mode and the results showed the entire similarity ratio reached to 100%","PeriodicalId":14562,"journal":{"name":"IRAQI JOURNAL OF AGRICULTURAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOLECULAR CHARACTERIZATION OF M. PHASEOLINA AND ITS MANAGEMENT USING AGROCHEMICALS AND T. HARZIANUM\",\"authors\":\"K. A. Sido, W. A. Hassan\",\"doi\":\"10.36103/4p59fb72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systemic Acquired Resistance (SAR) induced by agrochemicals of chitosan (CH) and salicylic acid (SA) at (25, 50 and 100 ppm) , in addition to a biocontrol agent of  T. harzianum (Th) at 4 ×106  were examined against M. phaseolina  the causal agent of charcoal rot of sunflower. The results depended on estimation of diseases severity and microsclerotia density in the soil. Thus, the seeds immersion in CH 75 ppm for 6 h., gave the highest and considerable reduction (p=0.05) in disease severity by 48.25% and reduced microsclerotia survived in the soil up to 70%. Application of SA at 50 and 75 ppm proved an obvious reduction of charcoal rot severity by up to 39% and 37% for both concentrations, respectively and not varied with Th. The results also confirmed that CH at 75 ppm revealed significant reduction 40.63% in disease severity and similarized with SA at same concentration. However, the lowest dose of SA at 25 ppm realized the highest reduction of micro sclerotia density by 80.28 % compared to 74.91% when used CH at 75 ppm. For molecular identification of a pathogen Polymerase Chain Reaction (PCR) using ITS4 and ITS5 universal primers were applied to amplify and sequence of DNA for six isolates of M. phaseolina viz., OL901219, OL636051, OL901220, OL901204, OL636050 and OL636053 compared for identity of rDNA sequence according to NCBI GenBank databases by BLAST mode and the results showed the entire similarity ratio reached to 100%\",\"PeriodicalId\":14562,\"journal\":{\"name\":\"IRAQI JOURNAL OF AGRICULTURAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRAQI JOURNAL OF AGRICULTURAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36103/4p59fb72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRAQI JOURNAL OF AGRICULTURAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36103/4p59fb72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了壳聚糖(CH)和水杨酸(SA)等农用化学品(25、50 和 100 ppm)以及 4 ×106 的向日葵炭腐病病原菌 T. harzianum(Th)生物控制剂诱导的系统获得抗性(SAR)。结果取决于对土壤中病害严重程度和小圆菌体密度的估计。因此,将种子浸泡在 75 ppm 的 CH 中 6 小时,病害严重程度降低了 48.25%(p=0.05),土壤中存活的小圆菌体减少了 70%。事实证明,施用 50 和 75 ppm 的 SA 能明显降低炭腐病的严重程度,两种浓度分别降低 39% 和 37%,且不随 Th 的变化而变化。结果还证实,施用 75 ppm 的 CH 能显著降低病害严重程度 40.63%,与施用相同浓度的 SA 相似。然而,最低剂量的 SA(25 ppm)与 CH(75 ppm)相比,微小硬菌密度减少了 80.28%,而 CH(75 ppm)则减少了 74.91%。为了对病原体进行分子鉴定,使用 ITS4 和 ITS5 通用引物进行聚合酶链式反应 (PCR),以扩增六种相思豆分离物(即 OL901219、OL636051、OL901220、OL901204、OL636050 和 OL636053)的 DNA 序列,并通过 BLAST 模式与 NCBI GenBank 数据库中的 rDNA 序列进行比对,结果显示整个相似率达到 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOLECULAR CHARACTERIZATION OF M. PHASEOLINA AND ITS MANAGEMENT USING AGROCHEMICALS AND T. HARZIANUM
Systemic Acquired Resistance (SAR) induced by agrochemicals of chitosan (CH) and salicylic acid (SA) at (25, 50 and 100 ppm) , in addition to a biocontrol agent of  T. harzianum (Th) at 4 ×106  were examined against M. phaseolina  the causal agent of charcoal rot of sunflower. The results depended on estimation of diseases severity and microsclerotia density in the soil. Thus, the seeds immersion in CH 75 ppm for 6 h., gave the highest and considerable reduction (p=0.05) in disease severity by 48.25% and reduced microsclerotia survived in the soil up to 70%. Application of SA at 50 and 75 ppm proved an obvious reduction of charcoal rot severity by up to 39% and 37% for both concentrations, respectively and not varied with Th. The results also confirmed that CH at 75 ppm revealed significant reduction 40.63% in disease severity and similarized with SA at same concentration. However, the lowest dose of SA at 25 ppm realized the highest reduction of micro sclerotia density by 80.28 % compared to 74.91% when used CH at 75 ppm. For molecular identification of a pathogen Polymerase Chain Reaction (PCR) using ITS4 and ITS5 universal primers were applied to amplify and sequence of DNA for six isolates of M. phaseolina viz., OL901219, OL636051, OL901220, OL901204, OL636050 and OL636053 compared for identity of rDNA sequence according to NCBI GenBank databases by BLAST mode and the results showed the entire similarity ratio reached to 100%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IRAQI JOURNAL OF AGRICULTURAL SCIENCES
IRAQI JOURNAL OF AGRICULTURAL SCIENCES AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
50.00%
发文量
140
审稿时长
6 weeks
期刊介绍: IRAQI JOURNAL OF AGRICULTURAL SCIENCES (IJAS)is the first agric. scientific and refereed journal established in Iraq. The first volume was published in 1966. IJAS is registered in the number 137 in 1988 of the Baghdad National Library. Years ago, it was published with one issue a year. For the time being, it is published bimonthly (6 issues for a volume). IJAS Deal with: Field Crops. Plant Breeding. Agricultural Economics. Agricultural Extension. Agricultural Mechanization. Basic sciences. Hort. Sciences. Animal Husbandry. Food Technology, Plant Pathology. Plant Entomology. Poultry Sciences. Soil Sciences. Water Resources. Veterinary. Biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信