{"title":"二氧化碳加氢过程中水在铜锌合金上自催化行为的起源","authors":"Kailang Li, Lulu Li, Xin Chang, Xiangcheng Shi, Xianghong Li, Chunlei Pei, Zhi-Jian Zhao* and Jinlong Gong, ","doi":"10.1021/cbe.3c00124","DOIUrl":null,"url":null,"abstract":"<p >Water plays a significant role in CO<sub>2</sub> hydrogenation, which is capable of accelerating the reaction in an autocatalytic manner, but the reason for water promotion in the system is still controversial. This work dissects the mechanisms behind the autocatalytic behavior of water in CO<sub>2</sub> hydrogenation. Based on the stable structure of CuZn(211) alloy under the reaction condition, density functional theory is employed to systematically explore all possible autocatalytic modes of water. We find that the influence of water on the reaction is mainly reflected in O–H bonding, in which water tends to facilitate the O–H bond formation by a direct participator mechanism. The nature of the facilitating effect is attributed to the nucleophilic property of O–H bonding. Due to the involvement of water, the reaction activity is enhanced with the improvement of CO selectivity. This work can provide a paradigm for investigating the origin of the autocatalytic behavior of water in heterogeneous catalysis.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 3","pages":"274–282"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00124","citationCount":"0","resultStr":"{\"title\":\"Origin of Autocatalytic Behavior of Water over CuZn Alloy in CO2 Hydrogenation\",\"authors\":\"Kailang Li, Lulu Li, Xin Chang, Xiangcheng Shi, Xianghong Li, Chunlei Pei, Zhi-Jian Zhao* and Jinlong Gong, \",\"doi\":\"10.1021/cbe.3c00124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water plays a significant role in CO<sub>2</sub> hydrogenation, which is capable of accelerating the reaction in an autocatalytic manner, but the reason for water promotion in the system is still controversial. This work dissects the mechanisms behind the autocatalytic behavior of water in CO<sub>2</sub> hydrogenation. Based on the stable structure of CuZn(211) alloy under the reaction condition, density functional theory is employed to systematically explore all possible autocatalytic modes of water. We find that the influence of water on the reaction is mainly reflected in O–H bonding, in which water tends to facilitate the O–H bond formation by a direct participator mechanism. The nature of the facilitating effect is attributed to the nucleophilic property of O–H bonding. Due to the involvement of water, the reaction activity is enhanced with the improvement of CO selectivity. This work can provide a paradigm for investigating the origin of the autocatalytic behavior of water in heterogeneous catalysis.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"1 3\",\"pages\":\"274–282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbe.3c00124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.3c00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
水在二氧化碳加氢反应中起着重要作用,它能以自催化的方式加速反应,但水在体系中的促进作用的原因仍存在争议。本研究剖析了水在 CO2 加氢反应中的自催化行为背后的机制。基于 CuZn(211) 合金在反应条件下的稳定结构,采用密度泛函理论系统地探讨了水的所有可能的自催化模式。我们发现水对反应的影响主要体现在 O-H 键上,其中水倾向于通过直接参与机制促进 O-H 键的形成。这种促进作用的本质归因于 O-H 键的亲核特性。由于水的参与,反应活性随着 CO 选择性的提高而增强。这项工作为研究水在异相催化中自催化行为的起源提供了一个范例。
Origin of Autocatalytic Behavior of Water over CuZn Alloy in CO2 Hydrogenation
Water plays a significant role in CO2 hydrogenation, which is capable of accelerating the reaction in an autocatalytic manner, but the reason for water promotion in the system is still controversial. This work dissects the mechanisms behind the autocatalytic behavior of water in CO2 hydrogenation. Based on the stable structure of CuZn(211) alloy under the reaction condition, density functional theory is employed to systematically explore all possible autocatalytic modes of water. We find that the influence of water on the reaction is mainly reflected in O–H bonding, in which water tends to facilitate the O–H bond formation by a direct participator mechanism. The nature of the facilitating effect is attributed to the nucleophilic property of O–H bonding. Due to the involvement of water, the reaction activity is enhanced with the improvement of CO selectivity. This work can provide a paradigm for investigating the origin of the autocatalytic behavior of water in heterogeneous catalysis.