利用地理空间信息编制细粒度人口数据

IF 1 Q4 DEVELOPMENT STUDIES
Katharina Fenz, Thomas Mitterling, A. J. M. Martinez, J. Bulan, Ron Lester Durante, Marymell A. Martillan, Mildred B. Addawe, Isabell Roitner-Fransecky
{"title":"利用地理空间信息编制细粒度人口数据","authors":"Katharina Fenz, Thomas Mitterling, A. J. M. Martinez, J. Bulan, Ron Lester Durante, Marymell A. Martillan, Mildred B. Addawe, Isabell Roitner-Fransecky","doi":"10.1142/s0116110524500021","DOIUrl":null,"url":null,"abstract":"Detailed data on the distribution of human populations are valuable inputs to research and decision making. This study aims at compiling data on population density that are more granular than government-published estimates and assessing different methods and model specifications. As a first step, we combine government-published data with publicly available data like land cover classes, elevation, slope, and nighttime lights, and then apply a random forest approach to estimate population density in the Philippines and Thailand at the 100 meter (m) by 100 m level. Second, we use different specifications of random forest and Bayesian model averaging (BMA) techniques to forecast grid-level population density and evaluate their predictive power. The use of a random forest model showed that reasonable forecasts of grid-level population growth rates are achievable. The results of this study contribute to the assessment of methods like random forest and BMA in forecasting population distributions.","PeriodicalId":39852,"journal":{"name":"Asian Development Review","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compiling Granular Population Data Using Geospatial Information\",\"authors\":\"Katharina Fenz, Thomas Mitterling, A. J. M. Martinez, J. Bulan, Ron Lester Durante, Marymell A. Martillan, Mildred B. Addawe, Isabell Roitner-Fransecky\",\"doi\":\"10.1142/s0116110524500021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed data on the distribution of human populations are valuable inputs to research and decision making. This study aims at compiling data on population density that are more granular than government-published estimates and assessing different methods and model specifications. As a first step, we combine government-published data with publicly available data like land cover classes, elevation, slope, and nighttime lights, and then apply a random forest approach to estimate population density in the Philippines and Thailand at the 100 meter (m) by 100 m level. Second, we use different specifications of random forest and Bayesian model averaging (BMA) techniques to forecast grid-level population density and evaluate their predictive power. The use of a random forest model showed that reasonable forecasts of grid-level population growth rates are achievable. The results of this study contribute to the assessment of methods like random forest and BMA in forecasting population distributions.\",\"PeriodicalId\":39852,\"journal\":{\"name\":\"Asian Development Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Development Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0116110524500021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENT STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Development Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0116110524500021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENT STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

有关人口分布的详细数据是研究和决策的宝贵投入。本研究旨在汇编比政府公布的估计值更精细的人口密度数据,并评估不同的方法和模型规格。首先,我们将政府公布的数据与土地覆被等级、海拔、坡度和夜间灯光等公开数据相结合,然后采用随机森林方法估算菲律宾和泰国 100 米乘 100 米级的人口密度。其次,我们使用不同规格的随机森林和贝叶斯模型平均(BMA)技术来预测网格级人口密度,并评估其预测能力。随机森林模型的使用表明,网格级人口增长率的合理预测是可以实现的。这项研究的结果有助于评估随机森林和贝叶斯模型平均法等方法在预测人口分布方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compiling Granular Population Data Using Geospatial Information
Detailed data on the distribution of human populations are valuable inputs to research and decision making. This study aims at compiling data on population density that are more granular than government-published estimates and assessing different methods and model specifications. As a first step, we combine government-published data with publicly available data like land cover classes, elevation, slope, and nighttime lights, and then apply a random forest approach to estimate population density in the Philippines and Thailand at the 100 meter (m) by 100 m level. Second, we use different specifications of random forest and Bayesian model averaging (BMA) techniques to forecast grid-level population density and evaluate their predictive power. The use of a random forest model showed that reasonable forecasts of grid-level population growth rates are achievable. The results of this study contribute to the assessment of methods like random forest and BMA in forecasting population distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Development Review
Asian Development Review Social Sciences-Development
CiteScore
2.30
自引率
0.00%
发文量
18
审稿时长
53 weeks
期刊介绍: The Asian Development Review is a professional journal for disseminating the results of economic and development research carried out by staff and resource persons of the Asian Development Bank (ADB). The Review stresses policy and operational relevance of development issues rather than the technical aspects of economics and other social sciences. Articles are refereed and intended for readership among economists and social scientists in government, private sector, academia, and international organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信