$$*$$-Lie(广义)派生的线性及其在 $$*$$-gebras 上的结构

IF 0.8 Q2 MATHEMATICS
Behrooz Fadaee, Hoger Ghahramani, Wu Jing
{"title":"$$*$$-Lie(广义)派生的线性及其在 $$*$$-gebras 上的结构","authors":"Behrooz Fadaee,&nbsp;Hoger Ghahramani,&nbsp;Wu Jing","doi":"10.1007/s43036-024-00320-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( {\\mathcal {A}} \\)</span> be a unital <span>\\(*\\)</span>-algebra with characteristic not 2 and containing a nontrivial projection. We show that each nonlinear <span>\\(*\\)</span>-Lie derivation on <span>\\({\\mathcal {A}}\\)</span> is a linear <span>\\(*\\)</span>-derivation. Moreover, we characterize nonlinear left <span>\\(*\\)</span>-Lie centralizers and nonlinear generalized <span>\\(*\\)</span>-Lie derivations. These results are applied to standard operator algebras and von Neumann algebras in complex Hilbert spaces, which generalize some known results.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearity of (generalized) \\\\(*\\\\)-Lie derivations and their structures on \\\\(*\\\\)-algebras\",\"authors\":\"Behrooz Fadaee,&nbsp;Hoger Ghahramani,&nbsp;Wu Jing\",\"doi\":\"10.1007/s43036-024-00320-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\( {\\\\mathcal {A}} \\\\)</span> be a unital <span>\\\\(*\\\\)</span>-algebra with characteristic not 2 and containing a nontrivial projection. We show that each nonlinear <span>\\\\(*\\\\)</span>-Lie derivation on <span>\\\\({\\\\mathcal {A}}\\\\)</span> is a linear <span>\\\\(*\\\\)</span>-derivation. Moreover, we characterize nonlinear left <span>\\\\(*\\\\)</span>-Lie centralizers and nonlinear generalized <span>\\\\(*\\\\)</span>-Lie derivations. These results are applied to standard operator algebras and von Neumann algebras in complex Hilbert spaces, which generalize some known results.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00320-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00320-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \( {\mathcal {A}} \)是一个特征不为2的单空 \(*\)-代数,并且包含一个非线性投影。我们证明,\({\mathcal {A}}\) 上的每个非线性 \(*\)-Lie 派生都是线性 \(*\)-derivation.此外,我们还描述了非线性左(*\)-Lie 中心子和非线性广义(*\)-Lie 衍生。这些结果被应用于复希尔伯特空间中的标准算子代数和冯-诺依曼代数,它们概括了一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearity of (generalized) \(*\)-Lie derivations and their structures on \(*\)-algebras

Let \( {\mathcal {A}} \) be a unital \(*\)-algebra with characteristic not 2 and containing a nontrivial projection. We show that each nonlinear \(*\)-Lie derivation on \({\mathcal {A}}\) is a linear \(*\)-derivation. Moreover, we characterize nonlinear left \(*\)-Lie centralizers and nonlinear generalized \(*\)-Lie derivations. These results are applied to standard operator algebras and von Neumann algebras in complex Hilbert spaces, which generalize some known results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信