考虑两相流情况下静态偏心率对挤压薄膜阻尼器振动阻尼特性的影响研究

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Hai Zhou, Liang Fang, Ming Zhang, Gangyi Cao, Jianyang Su
{"title":"考虑两相流情况下静态偏心率对挤压薄膜阻尼器振动阻尼特性的影响研究","authors":"Hai Zhou, Liang Fang, Ming Zhang, Gangyi Cao, Jianyang Su","doi":"10.3390/lubricants12030075","DOIUrl":null,"url":null,"abstract":"To analyze the effect of static eccentricity on the air ingestion distribution and vibration damping properties of the SFD, a numerical simulation study of SFDs considering two-phase flow was carried out based on CFD using a transient solution method and dynamic mesh technique. The results show that the angle between the static eccentricity direction and the circumferential direction of the oil supply hole increases and the air ingestion area in the oil film expands. In contrast, the oil film damping decreases, and the larger the static eccentricity distance, the greater its effect on the air ingestion area in the oil film. When the circumferential angle is small, the oil film damping increases with the increase of static eccentricity distance, and when the circumferential angle is large, the oil film damping decreases with the increase of static eccentricity distance and then increases. With the increase of static eccentricity distance, the air ingestion area at both ends of the oil film increases. At the same time, studying the effect of dynamic eccentricity shows that as the dynamic eccentricity increases, the oil film damping first decreases and then increases, and the air ingestion area increases. Comparing the 1 hole, the 2 hole, and the 3 hole oil supplies, the air ingestion area is significantly larger in the 1 hole oil supply than in the 2 hole or the 3 hole oil supplies, and the oil film damping of the 1 hole oil supply is smaller than the oil film damping of the 2 hole or the 3 hole oil supplies. It can be seen from the present study that in the actual installation of the SFD, when the circumferential angle is less than 60°, the static eccentricity can be increased appropriately. When the circumferential angle is greater than 60°, the static eccentricity can be appropriately reduced.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Effect of Static Eccentricity on Vibration Damping Properties of Squeeze Film Dampers Considering the Two-Phase Flow Case\",\"authors\":\"Hai Zhou, Liang Fang, Ming Zhang, Gangyi Cao, Jianyang Su\",\"doi\":\"10.3390/lubricants12030075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To analyze the effect of static eccentricity on the air ingestion distribution and vibration damping properties of the SFD, a numerical simulation study of SFDs considering two-phase flow was carried out based on CFD using a transient solution method and dynamic mesh technique. The results show that the angle between the static eccentricity direction and the circumferential direction of the oil supply hole increases and the air ingestion area in the oil film expands. In contrast, the oil film damping decreases, and the larger the static eccentricity distance, the greater its effect on the air ingestion area in the oil film. When the circumferential angle is small, the oil film damping increases with the increase of static eccentricity distance, and when the circumferential angle is large, the oil film damping decreases with the increase of static eccentricity distance and then increases. With the increase of static eccentricity distance, the air ingestion area at both ends of the oil film increases. At the same time, studying the effect of dynamic eccentricity shows that as the dynamic eccentricity increases, the oil film damping first decreases and then increases, and the air ingestion area increases. Comparing the 1 hole, the 2 hole, and the 3 hole oil supplies, the air ingestion area is significantly larger in the 1 hole oil supply than in the 2 hole or the 3 hole oil supplies, and the oil film damping of the 1 hole oil supply is smaller than the oil film damping of the 2 hole or the 3 hole oil supplies. It can be seen from the present study that in the actual installation of the SFD, when the circumferential angle is less than 60°, the static eccentricity can be increased appropriately. When the circumferential angle is greater than 60°, the static eccentricity can be appropriately reduced.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12030075\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了分析静偏心对 SFD 的进气分布和减振特性的影响,基于 CFD,采用瞬态求解方法和动态网格技术,对考虑两相流的 SFD 进行了数值模拟研究。结果表明,静态偏心方向与供油孔圆周方向的夹角增大,油膜中的空气摄入面积扩大。相反,油膜阻尼减小,静态偏心距越大,对油膜进气面积的影响越大。当圆周角较小时,油膜阻尼随静态偏心距的增大而增大;当圆周角较大时,油膜阻尼随静态偏心距的增大而减小,然后增大。随着静偏心距的增大,油膜两端的进气面积增大。同时,研究动态偏心率的影响表明,随着动态偏心率的增大,油膜阻尼先减小后增大,进气面积增大。对比 1 孔、2 孔和 3 孔供油装置,1 孔供油装置的进气面积明显大于 2 孔和 3 孔供油装置,且 1 孔供油装置的油膜阻尼小于 2 孔和 3 孔供油装置的油膜阻尼。从本研究中可以看出,在 SFD 的实际安装中,当圆周角小于 60°时,可以适当增加静偏心。当圆周角大于 60°时,可适当减小静偏心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the Effect of Static Eccentricity on Vibration Damping Properties of Squeeze Film Dampers Considering the Two-Phase Flow Case
To analyze the effect of static eccentricity on the air ingestion distribution and vibration damping properties of the SFD, a numerical simulation study of SFDs considering two-phase flow was carried out based on CFD using a transient solution method and dynamic mesh technique. The results show that the angle between the static eccentricity direction and the circumferential direction of the oil supply hole increases and the air ingestion area in the oil film expands. In contrast, the oil film damping decreases, and the larger the static eccentricity distance, the greater its effect on the air ingestion area in the oil film. When the circumferential angle is small, the oil film damping increases with the increase of static eccentricity distance, and when the circumferential angle is large, the oil film damping decreases with the increase of static eccentricity distance and then increases. With the increase of static eccentricity distance, the air ingestion area at both ends of the oil film increases. At the same time, studying the effect of dynamic eccentricity shows that as the dynamic eccentricity increases, the oil film damping first decreases and then increases, and the air ingestion area increases. Comparing the 1 hole, the 2 hole, and the 3 hole oil supplies, the air ingestion area is significantly larger in the 1 hole oil supply than in the 2 hole or the 3 hole oil supplies, and the oil film damping of the 1 hole oil supply is smaller than the oil film damping of the 2 hole or the 3 hole oil supplies. It can be seen from the present study that in the actual installation of the SFD, when the circumferential angle is less than 60°, the static eccentricity can be increased appropriately. When the circumferential angle is greater than 60°, the static eccentricity can be appropriately reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信