Huai-Xin Cao, Hong-Yi Chen, Zhi-Hua Guo, Tsung-Lin Lee, Ngai-Ching Wong
{"title":"Q-随机张量的凸分解和多方系统中的贝尔位置性","authors":"Huai-Xin Cao, Hong-Yi Chen, Zhi-Hua Guo, Tsung-Lin Lee, Ngai-Ching Wong","doi":"10.1007/s43036-024-00316-x","DOIUrl":null,"url":null,"abstract":"<div><p>Generalizing the notions of the row and the column stochastic matrices, we introduce the multidimensional <i>Q</i>-stochastic tensors. We prove that every <i>Q</i>-stochastic tensor can be decomposed as a convex combination of finitely many binary <i>Q</i>-stochastic tensors and that the binary <i>Q</i>-stochastic tensors are exactly the extreme points of the compact convex set of all <i>Q</i>-stochastic tensors with the same size. Applications to characterizing the Bell locality of a quantum state in a multipartite system are demonstrated. Algorithms for computing the convex decompositions of <i>Q</i>-stochastic tensors are provided.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex decompositions of Q-stochastic tensors and Bell locality in a multipartite system\",\"authors\":\"Huai-Xin Cao, Hong-Yi Chen, Zhi-Hua Guo, Tsung-Lin Lee, Ngai-Ching Wong\",\"doi\":\"10.1007/s43036-024-00316-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generalizing the notions of the row and the column stochastic matrices, we introduce the multidimensional <i>Q</i>-stochastic tensors. We prove that every <i>Q</i>-stochastic tensor can be decomposed as a convex combination of finitely many binary <i>Q</i>-stochastic tensors and that the binary <i>Q</i>-stochastic tensors are exactly the extreme points of the compact convex set of all <i>Q</i>-stochastic tensors with the same size. Applications to characterizing the Bell locality of a quantum state in a multipartite system are demonstrated. Algorithms for computing the convex decompositions of <i>Q</i>-stochastic tensors are provided.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00316-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00316-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Convex decompositions of Q-stochastic tensors and Bell locality in a multipartite system
Generalizing the notions of the row and the column stochastic matrices, we introduce the multidimensional Q-stochastic tensors. We prove that every Q-stochastic tensor can be decomposed as a convex combination of finitely many binary Q-stochastic tensors and that the binary Q-stochastic tensors are exactly the extreme points of the compact convex set of all Q-stochastic tensors with the same size. Applications to characterizing the Bell locality of a quantum state in a multipartite system are demonstrated. Algorithms for computing the convex decompositions of Q-stochastic tensors are provided.