洪水风险预测的数据驱动方法和混合深度学习模型

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chenmin Ni, Pei Shan Fam, Muhammad Fadhil Marsani
{"title":"洪水风险预测的数据驱动方法和混合深度学习模型","authors":"Chenmin Ni,&nbsp;Pei Shan Fam,&nbsp;Muhammad Fadhil Marsani","doi":"10.1155/2024/3562709","DOIUrl":null,"url":null,"abstract":"<p>Flood disasters occur worldwide, and flood risk prediction is conducive to protecting human life and property safety. Influenced by topographic changes and rainfall, the water level fluctuates randomly and violently during the flood, introducing many noises and directly increasing the difficulty of flood prediction. A data-driven flood forecasting method is proposed based on data preprocessing and a two-layer BiLSTM-Attention network to improve forecast accuracy. First, the Variational Mode Decomposition (VMD) is used to decompose the data for reducing noise and produce suitable Intrinsic Mode Functions (IMFs); Then, an optimized two-layer attention-based Bidirectional Long Sshort-Term memory (BiLSTM-Attention) network is constructed to predict each IMF. Finally, two optimization algorithms are used to obtain the optimized parameters of VMD and BiLSTM intelligently, increasing the self-adaptability. The inertia factor of particle swarm optimization is improved and then used to optimize the five hyperparameters of BiLSTM. The proposed model reduces storage errors for smaller training sets and can achieve good performance. Three water level data sets from the Yangtze River in China are used for comparative experiments. Numerical results show that the peak height absolute error is within 2 cm, and the relative error of peak time arrival is within 30%. Compared with LSTM, BiLSTM, CNN-BiLSTM-attention, etc., the proposed model reduces the root mean square error by at least 50% and has advantages for high-risk forecasting when the water level exceeds the defense line and fluctuates prominently.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk Prediction\",\"authors\":\"Chenmin Ni,&nbsp;Pei Shan Fam,&nbsp;Muhammad Fadhil Marsani\",\"doi\":\"10.1155/2024/3562709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flood disasters occur worldwide, and flood risk prediction is conducive to protecting human life and property safety. Influenced by topographic changes and rainfall, the water level fluctuates randomly and violently during the flood, introducing many noises and directly increasing the difficulty of flood prediction. A data-driven flood forecasting method is proposed based on data preprocessing and a two-layer BiLSTM-Attention network to improve forecast accuracy. First, the Variational Mode Decomposition (VMD) is used to decompose the data for reducing noise and produce suitable Intrinsic Mode Functions (IMFs); Then, an optimized two-layer attention-based Bidirectional Long Sshort-Term memory (BiLSTM-Attention) network is constructed to predict each IMF. Finally, two optimization algorithms are used to obtain the optimized parameters of VMD and BiLSTM intelligently, increasing the self-adaptability. The inertia factor of particle swarm optimization is improved and then used to optimize the five hyperparameters of BiLSTM. The proposed model reduces storage errors for smaller training sets and can achieve good performance. Three water level data sets from the Yangtze River in China are used for comparative experiments. Numerical results show that the peak height absolute error is within 2 cm, and the relative error of peak time arrival is within 30%. Compared with LSTM, BiLSTM, CNN-BiLSTM-attention, etc., the proposed model reduces the root mean square error by at least 50% and has advantages for high-risk forecasting when the water level exceeds the defense line and fluctuates prominently.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3562709\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3562709","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

洪水灾害在全球范围内时有发生,洪水风险预测有利于保护人类生命和财产安全。受地形变化和降雨的影响,洪水过程中水位随机剧烈波动,引入了许多噪声,直接增加了洪水预报的难度。为了提高预报精度,本文提出了一种基于数据预处理和双层 BiLSTM-Attention 网络的数据驱动洪水预报方法。首先,利用变异模态分解(VMD)对数据进行分解以减少噪声,并产生合适的本征模态函数(IMF);然后,构建一个优化的基于注意力的双向长短时记忆(BiLSTM-Attention)双层网络来预测每个本征模态函数。最后,利用两种优化算法智能地获得 VMD 和 BiLSTM 的优化参数,提高自适应能力。改进粒子群优化的惯性因子后,用于优化 BiLSTM 的五个超参数。所提出的模型减少了较小训练集的存储误差,并能获得良好的性能。对比实验使用了中国长江的三个水位数据集。数值结果表明,峰值高度绝对误差在 2 厘米以内,峰值到达时间相对误差在 30% 以内。与 LSTM、BiLSTM、CNN-BiLSTM-注意力等相比,所提出的模型至少减少了 50%的均方根误差,在水位超过防线且波动剧烈的高风险预报中具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk Prediction

Flood disasters occur worldwide, and flood risk prediction is conducive to protecting human life and property safety. Influenced by topographic changes and rainfall, the water level fluctuates randomly and violently during the flood, introducing many noises and directly increasing the difficulty of flood prediction. A data-driven flood forecasting method is proposed based on data preprocessing and a two-layer BiLSTM-Attention network to improve forecast accuracy. First, the Variational Mode Decomposition (VMD) is used to decompose the data for reducing noise and produce suitable Intrinsic Mode Functions (IMFs); Then, an optimized two-layer attention-based Bidirectional Long Sshort-Term memory (BiLSTM-Attention) network is constructed to predict each IMF. Finally, two optimization algorithms are used to obtain the optimized parameters of VMD and BiLSTM intelligently, increasing the self-adaptability. The inertia factor of particle swarm optimization is improved and then used to optimize the five hyperparameters of BiLSTM. The proposed model reduces storage errors for smaller training sets and can achieve good performance. Three water level data sets from the Yangtze River in China are used for comparative experiments. Numerical results show that the peak height absolute error is within 2 cm, and the relative error of peak time arrival is within 30%. Compared with LSTM, BiLSTM, CNN-BiLSTM-attention, etc., the proposed model reduces the root mean square error by at least 50% and has advantages for high-risk forecasting when the water level exceeds the defense line and fluctuates prominently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信