{"title":"利用 EfficientNetV2S 进行迁移学习,实现自动人脸形状分类","authors":"Petra Grd, I. Tomičić, Ena Barčić","doi":"10.3897/jucs.104490","DOIUrl":null,"url":null,"abstract":"The classification of human face shapes, a pivotal aspect of one’s appearance, plays a crucial role in diverse fields like beauty, cosmetics, healthcare, and security. In this paper, we present a multi-step methodology for face shape classification, harnessing the potential of transfer learning and a pretrained EfficientNetV2S neural network. Our approach comprises key phases, including preprocessing, augmentation, training, and testing, ensuring a comprehensive and reliable solution. The preprocessing step involves precise face detection, cropping, and image scaling, laying a solid foundation for accurate feature extraction. Our methodology utilizes a publicly available dataset of female celebrities, comprising five face shape classes: heart, oblong, oval, round, and square. By augmenting this dataset during training, we magnify its diversity, enabling better generalization and enhancing the model’s robustness. With the EfficientNetV2S neural network, we employ transfer learning, leveraging pretrained weights to optimize accuracy, training speed, and parameter size. The result is a highly efficient and effective model, which outperforms state-of-the-art approaches on the same dataset, boasting an outstanding overall accuracy of 96.32%. Our findings demonstrate the efficiency of our approach, proving its potential in the field of face shape classification. The success of our methodology holds promise for various applications, offering valuable insights into beauty analysis, cosmetic recommendations, and personalized healthcare.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"124 1","pages":"153-178"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification\",\"authors\":\"Petra Grd, I. Tomičić, Ena Barčić\",\"doi\":\"10.3897/jucs.104490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of human face shapes, a pivotal aspect of one’s appearance, plays a crucial role in diverse fields like beauty, cosmetics, healthcare, and security. In this paper, we present a multi-step methodology for face shape classification, harnessing the potential of transfer learning and a pretrained EfficientNetV2S neural network. Our approach comprises key phases, including preprocessing, augmentation, training, and testing, ensuring a comprehensive and reliable solution. The preprocessing step involves precise face detection, cropping, and image scaling, laying a solid foundation for accurate feature extraction. Our methodology utilizes a publicly available dataset of female celebrities, comprising five face shape classes: heart, oblong, oval, round, and square. By augmenting this dataset during training, we magnify its diversity, enabling better generalization and enhancing the model’s robustness. With the EfficientNetV2S neural network, we employ transfer learning, leveraging pretrained weights to optimize accuracy, training speed, and parameter size. The result is a highly efficient and effective model, which outperforms state-of-the-art approaches on the same dataset, boasting an outstanding overall accuracy of 96.32%. Our findings demonstrate the efficiency of our approach, proving its potential in the field of face shape classification. The success of our methodology holds promise for various applications, offering valuable insights into beauty analysis, cosmetic recommendations, and personalized healthcare.\",\"PeriodicalId\":14652,\"journal\":{\"name\":\"J. Univers. Comput. Sci.\",\"volume\":\"124 1\",\"pages\":\"153-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Univers. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/jucs.104490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Univers. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jucs.104490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification
The classification of human face shapes, a pivotal aspect of one’s appearance, plays a crucial role in diverse fields like beauty, cosmetics, healthcare, and security. In this paper, we present a multi-step methodology for face shape classification, harnessing the potential of transfer learning and a pretrained EfficientNetV2S neural network. Our approach comprises key phases, including preprocessing, augmentation, training, and testing, ensuring a comprehensive and reliable solution. The preprocessing step involves precise face detection, cropping, and image scaling, laying a solid foundation for accurate feature extraction. Our methodology utilizes a publicly available dataset of female celebrities, comprising five face shape classes: heart, oblong, oval, round, and square. By augmenting this dataset during training, we magnify its diversity, enabling better generalization and enhancing the model’s robustness. With the EfficientNetV2S neural network, we employ transfer learning, leveraging pretrained weights to optimize accuracy, training speed, and parameter size. The result is a highly efficient and effective model, which outperforms state-of-the-art approaches on the same dataset, boasting an outstanding overall accuracy of 96.32%. Our findings demonstrate the efficiency of our approach, proving its potential in the field of face shape classification. The success of our methodology holds promise for various applications, offering valuable insights into beauty analysis, cosmetic recommendations, and personalized healthcare.