二维多功能器件:从材料制备到器件制造和神经形态应用

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Zhuohui Huang, Yanran Li, Yi Zhang, Jiewei Chen, Jun He, Jie Jiang
{"title":"二维多功能器件:从材料制备到器件制造和神经形态应用","authors":"Zhuohui Huang, Yanran Li, Yi Zhang, Jiewei Chen, Jun He, Jie Jiang","doi":"10.1088/2631-7990/ad2e13","DOIUrl":null,"url":null,"abstract":"\n Neuromorphic computing systems, which mimic the operation of neurons and synapses in the human brain, are seen as an appealing next-generation computing method due to their strong and efficient computing abilities. Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware. As a result, 2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications. Here, we review the recent neuromorphic devices based on 2D material and their multifunctional applications. The synthesis and next micro-nano fabrication methods of 2D materials and their heterostructures are first introduced. The recent advances of neuromorphic 2D devices are discussed in details using different operating principles. More importantly, we present a review of emerging multifunctional neuromorphic applications, including neuromorphic visual, auditory, tactile, and nociceptive systems based on 2D devices. In the end, we discuss the problems and methods for 2D neuromorphic device developments in the future. This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Multifunctional Devices: from Material Preparation to Device Fabrication and Neuromorphic Applications\",\"authors\":\"Zhuohui Huang, Yanran Li, Yi Zhang, Jiewei Chen, Jun He, Jie Jiang\",\"doi\":\"10.1088/2631-7990/ad2e13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Neuromorphic computing systems, which mimic the operation of neurons and synapses in the human brain, are seen as an appealing next-generation computing method due to their strong and efficient computing abilities. Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware. As a result, 2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications. Here, we review the recent neuromorphic devices based on 2D material and their multifunctional applications. The synthesis and next micro-nano fabrication methods of 2D materials and their heterostructures are first introduced. The recent advances of neuromorphic 2D devices are discussed in details using different operating principles. More importantly, we present a review of emerging multifunctional neuromorphic applications, including neuromorphic visual, auditory, tactile, and nociceptive systems based on 2D devices. In the end, we discuss the problems and methods for 2D neuromorphic device developments in the future. This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad2e13\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad2e13","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算系统模仿人脑中神经元和突触的运作,因其强大而高效的计算能力而被视为一种极具吸引力的下一代计算方法。具有无悬浮键表面和原子级厚度的二维(2D)材料已成为神经形态计算硬件的理想候选材料。因此,二维神经形态设备可为开发多功能神经形态应用提供理想平台。在此,我们回顾了近期基于二维材料的神经形态器件及其多功能应用。首先介绍了二维材料及其异质结构的合成和下一步微纳制造方法。利用不同的工作原理详细讨论了神经形态二维器件的最新进展。更重要的是,我们综述了新兴的多功能神经形态应用,包括基于二维器件的神经形态视觉、听觉、触觉和痛觉系统。最后,我们讨论了未来二维神经形态设备开发的问题和方法。本文将为设计二维神经形态设备并将其应用于未来的神经形态系统提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Multifunctional Devices: from Material Preparation to Device Fabrication and Neuromorphic Applications
Neuromorphic computing systems, which mimic the operation of neurons and synapses in the human brain, are seen as an appealing next-generation computing method due to their strong and efficient computing abilities. Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware. As a result, 2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications. Here, we review the recent neuromorphic devices based on 2D material and their multifunctional applications. The synthesis and next micro-nano fabrication methods of 2D materials and their heterostructures are first introduced. The recent advances of neuromorphic 2D devices are discussed in details using different operating principles. More importantly, we present a review of emerging multifunctional neuromorphic applications, including neuromorphic visual, auditory, tactile, and nociceptive systems based on 2D devices. In the end, we discuss the problems and methods for 2D neuromorphic device developments in the future. This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信