分式费雪方程的瞬态动力学

E. C. Gabrick, P. Protachevicz, Diogo L. M. Souza, José Trobia, E. Sayari, F. Borges, M. Lenzi, I. L. Caldas, Antonio M. Batista, E. Lenzi
{"title":"分式费雪方程的瞬态动力学","authors":"E. C. Gabrick, P. Protachevicz, Diogo L. M. Souza, José Trobia, E. Sayari, F. Borges, M. Lenzi, I. L. Caldas, Antonio M. Batista, E. Lenzi","doi":"10.3390/fractalfract8030143","DOIUrl":null,"url":null,"abstract":"We investigate the transient dynamics of the Fisher equation under nonlinear diffusion and fractional operators. Firstly, we investigate the effects of the nonlinear diffusivity parameter in the integer-order Fisher equation, by considering a Gaussian distribution as the initial condition. Measuring the spread of the Gaussian distribution by u(0,t)−2, our results show that the solution reaches a steady state governed by the parameters present in the logistic function in Fisher’s equation. The initial transient is an anomalous diffusion process, but a power law cannot describe the whole transient. In this sense, the main novelty of this work is to show that a q-exponential function gives a better description of the transient dynamics. In addition to this result, we extend the Fisher equation via non-integer operators. As a fractional definition, we employ the Caputo fractional derivative and use a discretized system for the numerical approach according to finite difference schemes. We consider the numerical solutions in three scenarios: fractional differential operators acting in time, space, and in both variables. Our results show that the time to reach the steady solution strongly depends on the fractional order of the differential operator, with more influence by the time operator. Our main finding shows that a generalized q-exponential, present in the Tsallis formalism, describes the transient dynamics. The adjustment parameters of the q-exponential depend on the fractional order, connecting the generalized thermostatistics with the anomalous relaxation promoted by the fractional operators in time and space.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"1983 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Dynamics of a Fractional Fisher Equation\",\"authors\":\"E. C. Gabrick, P. Protachevicz, Diogo L. M. Souza, José Trobia, E. Sayari, F. Borges, M. Lenzi, I. L. Caldas, Antonio M. Batista, E. Lenzi\",\"doi\":\"10.3390/fractalfract8030143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the transient dynamics of the Fisher equation under nonlinear diffusion and fractional operators. Firstly, we investigate the effects of the nonlinear diffusivity parameter in the integer-order Fisher equation, by considering a Gaussian distribution as the initial condition. Measuring the spread of the Gaussian distribution by u(0,t)−2, our results show that the solution reaches a steady state governed by the parameters present in the logistic function in Fisher’s equation. The initial transient is an anomalous diffusion process, but a power law cannot describe the whole transient. In this sense, the main novelty of this work is to show that a q-exponential function gives a better description of the transient dynamics. In addition to this result, we extend the Fisher equation via non-integer operators. As a fractional definition, we employ the Caputo fractional derivative and use a discretized system for the numerical approach according to finite difference schemes. We consider the numerical solutions in three scenarios: fractional differential operators acting in time, space, and in both variables. Our results show that the time to reach the steady solution strongly depends on the fractional order of the differential operator, with more influence by the time operator. Our main finding shows that a generalized q-exponential, present in the Tsallis formalism, describes the transient dynamics. The adjustment parameters of the q-exponential depend on the fractional order, connecting the generalized thermostatistics with the anomalous relaxation promoted by the fractional operators in time and space.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"1983 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8030143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8030143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了费舍尔方程在非线性扩散和分数算子作用下的瞬态动力学。首先,我们以高斯分布为初始条件,研究非线性扩散参数在整阶费雪方程中的影响。通过 u(0,t)-2 测量高斯分布的扩散,我们的结果表明,解达到了受费舍尔方程中的对数函数参数支配的稳定状态。初始瞬态是一个异常扩散过程,但幂律无法描述整个瞬态。从这个意义上说,这项工作的主要创新之处在于证明了 q 指数函数能更好地描述瞬态动力学。除了这一结果,我们还通过非整数算子扩展了费雪方程。作为分数定义,我们采用了卡普托分数导数,并根据有限差分方案使用离散系统进行数值计算。我们考虑了三种情况下的数值解:作用于时间、空间和两个变量的分数微分算子。我们的结果表明,达到稳定解的时间与微分算子的分数阶数密切相关,时间算子的影响更大。我们的主要发现表明,存在于 Tsallis 形式主义中的广义 q 指数描述了瞬态动力学。q 指数的调整参数取决于分数阶,从而将广义恒温特性与分数算子在时间和空间上促进的反常松弛联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Dynamics of a Fractional Fisher Equation
We investigate the transient dynamics of the Fisher equation under nonlinear diffusion and fractional operators. Firstly, we investigate the effects of the nonlinear diffusivity parameter in the integer-order Fisher equation, by considering a Gaussian distribution as the initial condition. Measuring the spread of the Gaussian distribution by u(0,t)−2, our results show that the solution reaches a steady state governed by the parameters present in the logistic function in Fisher’s equation. The initial transient is an anomalous diffusion process, but a power law cannot describe the whole transient. In this sense, the main novelty of this work is to show that a q-exponential function gives a better description of the transient dynamics. In addition to this result, we extend the Fisher equation via non-integer operators. As a fractional definition, we employ the Caputo fractional derivative and use a discretized system for the numerical approach according to finite difference schemes. We consider the numerical solutions in three scenarios: fractional differential operators acting in time, space, and in both variables. Our results show that the time to reach the steady solution strongly depends on the fractional order of the differential operator, with more influence by the time operator. Our main finding shows that a generalized q-exponential, present in the Tsallis formalism, describes the transient dynamics. The adjustment parameters of the q-exponential depend on the fractional order, connecting the generalized thermostatistics with the anomalous relaxation promoted by the fractional operators in time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信