从单信道脑电图检测癫痫发作的基于 ML 的新算法

NeuroSci Pub Date : 2024-02-29 DOI:10.3390/neurosci5010004
Yazan M. Dweiri, Taqwa K. Al-Omary
{"title":"从单信道脑电图检测癫痫发作的基于 ML 的新算法","authors":"Yazan M. Dweiri, Taqwa K. Al-Omary","doi":"10.3390/neurosci5010004","DOIUrl":null,"url":null,"abstract":"There is a need for seizure classification based on EEG signals that can be implemented with a portable device for in-home continuous minoring of epilepsy. In this study, we developed a novel machine learning algorithm for seizure detection suitable for wearable systems. Extreme gradient boosting (XGBoost) was implemented to classify seizures from single-channel EEG obtained from an open-source CHB-MIT database. The results of classifying 1-s EEG segments are shown to be sufficient to obtain the information needed for seizure detection and achieve a high seizure sensitivity of up to 89% with low computational cost. This algorithm can be impeded in single-channel EEG systems that use in- or around-the-ear electrodes for continuous seizure monitoring at home.","PeriodicalId":503052,"journal":{"name":"NeuroSci","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel ML-Based Algorithm for Detecting Seizures from Single-Channel EEG\",\"authors\":\"Yazan M. Dweiri, Taqwa K. Al-Omary\",\"doi\":\"10.3390/neurosci5010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a need for seizure classification based on EEG signals that can be implemented with a portable device for in-home continuous minoring of epilepsy. In this study, we developed a novel machine learning algorithm for seizure detection suitable for wearable systems. Extreme gradient boosting (XGBoost) was implemented to classify seizures from single-channel EEG obtained from an open-source CHB-MIT database. The results of classifying 1-s EEG segments are shown to be sufficient to obtain the information needed for seizure detection and achieve a high seizure sensitivity of up to 89% with low computational cost. This algorithm can be impeded in single-channel EEG systems that use in- or around-the-ear electrodes for continuous seizure monitoring at home.\",\"PeriodicalId\":503052,\"journal\":{\"name\":\"NeuroSci\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neurosci5010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci5010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们需要基于脑电信号进行癫痫发作分类,这种分类可通过便携式设备实现,以便在家中持续监测癫痫。在这项研究中,我们开发了一种适用于可穿戴系统的新型癫痫发作检测机器学习算法。从开源的 CHB-MIT 数据库中获取的单通道脑电图中,采用极端梯度提升(XGBoost)算法对癫痫发作进行分类。对 1 秒脑电图片段进行分类的结果表明,该算法足以获得癫痫发作检测所需的信息,并能以较低的计算成本实现高达 89% 的癫痫发作灵敏度。这种算法在使用耳内或耳周电极进行家庭连续癫痫发作监测的单通道脑电图系统中可能会受到阻碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel ML-Based Algorithm for Detecting Seizures from Single-Channel EEG
There is a need for seizure classification based on EEG signals that can be implemented with a portable device for in-home continuous minoring of epilepsy. In this study, we developed a novel machine learning algorithm for seizure detection suitable for wearable systems. Extreme gradient boosting (XGBoost) was implemented to classify seizures from single-channel EEG obtained from an open-source CHB-MIT database. The results of classifying 1-s EEG segments are shown to be sufficient to obtain the information needed for seizure detection and achieve a high seizure sensitivity of up to 89% with low computational cost. This algorithm can be impeded in single-channel EEG systems that use in- or around-the-ear electrodes for continuous seizure monitoring at home.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信