微管对盐胁迫的反应

IF 2.1 4区 生物学 Q2 Agricultural and Biological Sciences
Emre Köseoğlu, Özlem Aytürk
{"title":"微管对盐胁迫的反应","authors":"Emre Köseoğlu, Özlem Aytürk","doi":"10.36253/caryologia-2229","DOIUrl":null,"url":null,"abstract":"This study has aimed to investigate the relationship between salt stress, programmed cell death (PCD) and microtubule distribution in terms of duration and stress dose. PCD is an important mechanism that benefits living organisms throughout their lives. On the other hand, PCD is an indirect effect that reduces efficiency when it occurs under stress. In this research The maize (Zea mays) roots were exposed to salt stress with 0, 50, 100, 300 and 500 mM NaCl. The prepared paraffin sections of these five groups were subjected to DAPI (4-6-diamidino-2-phenylindole) and TUNEL analysis to study the morphological changes caused by stress-induced nuclear degeneration. PCD was determined. Microtubule labeling analysis was performed on the tissues to determine whether there were stress-induced microtubule changes in these cells and disturbances were found; they exhibited aggregation, regional thickening, and random distribution around the nucleus and vacuole and under the cell wall. When all groups were evaluated, cells exposed to a salt concentration of 50 mM (even after 24 hours) were significantly less damaged than cells at other concentrations (100, 300, and 500 mM) at each time point. The rate of progression and spread to the whole tissue was significantly higher at 300 and 500 mM salt concentrations compared to the other groups. To reduce economic losses in salty soils, it is of great importance to fully investigate stress. The data that will emerge from our research, which is the subject of a small number of studies, will help to understand the mechanism of stress, microtubule and PCD.","PeriodicalId":9634,"journal":{"name":"Caryologia","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microtubule response to salt stress\",\"authors\":\"Emre Köseoğlu, Özlem Aytürk\",\"doi\":\"10.36253/caryologia-2229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has aimed to investigate the relationship between salt stress, programmed cell death (PCD) and microtubule distribution in terms of duration and stress dose. PCD is an important mechanism that benefits living organisms throughout their lives. On the other hand, PCD is an indirect effect that reduces efficiency when it occurs under stress. In this research The maize (Zea mays) roots were exposed to salt stress with 0, 50, 100, 300 and 500 mM NaCl. The prepared paraffin sections of these five groups were subjected to DAPI (4-6-diamidino-2-phenylindole) and TUNEL analysis to study the morphological changes caused by stress-induced nuclear degeneration. PCD was determined. Microtubule labeling analysis was performed on the tissues to determine whether there were stress-induced microtubule changes in these cells and disturbances were found; they exhibited aggregation, regional thickening, and random distribution around the nucleus and vacuole and under the cell wall. When all groups were evaluated, cells exposed to a salt concentration of 50 mM (even after 24 hours) were significantly less damaged than cells at other concentrations (100, 300, and 500 mM) at each time point. The rate of progression and spread to the whole tissue was significantly higher at 300 and 500 mM salt concentrations compared to the other groups. To reduce economic losses in salty soils, it is of great importance to fully investigate stress. The data that will emerge from our research, which is the subject of a small number of studies, will help to understand the mechanism of stress, microtubule and PCD.\",\"PeriodicalId\":9634,\"journal\":{\"name\":\"Caryologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Caryologia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.36253/caryologia-2229\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Caryologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.36253/caryologia-2229","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在从持续时间和胁迫剂量的角度研究盐胁迫、细胞程序性死亡(PCD)和微管分布之间的关系。程序性细胞死亡(PCD)是一种重要机制,对生物体的整个生命过程都有益处。另一方面,PCD 是一种间接效应,在胁迫下发生时会降低效率。在这项研究中,玉米(Zea mays)根受到了 0、50、100、300 和 500 mM NaCl 的盐胁迫。对这五组制备的石蜡切片进行 DAPI(4-6-二脒基-2-苯基吲哚)和 TUNEL 分析,以研究应激诱导的核变性引起的形态变化。测定 PCD。对组织进行了微管标记分析,以确定这些细胞中是否存在应激诱导的微管变化,结果发现存在干扰;它们表现出聚集、区域性增厚、随机分布在细胞核和液泡周围以及细胞壁下。在对所有组别进行评估时,暴露于盐浓度为 50 毫摩尔(即使在 24 小时后)的细胞在每个时间点的受损程度明显低于暴露于其他浓度(100、300 和 500 毫摩尔)的细胞。与其他组相比,300 毫摩尔和 500 毫摩尔盐浓度下整个组织的恶化和扩散速度明显更高。为了减少盐碱地的经济损失,充分研究胁迫具有重要意义。我们的研究是少数研究的主题,研究得出的数据将有助于了解胁迫、微管和 PCD 的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microtubule response to salt stress
This study has aimed to investigate the relationship between salt stress, programmed cell death (PCD) and microtubule distribution in terms of duration and stress dose. PCD is an important mechanism that benefits living organisms throughout their lives. On the other hand, PCD is an indirect effect that reduces efficiency when it occurs under stress. In this research The maize (Zea mays) roots were exposed to salt stress with 0, 50, 100, 300 and 500 mM NaCl. The prepared paraffin sections of these five groups were subjected to DAPI (4-6-diamidino-2-phenylindole) and TUNEL analysis to study the morphological changes caused by stress-induced nuclear degeneration. PCD was determined. Microtubule labeling analysis was performed on the tissues to determine whether there were stress-induced microtubule changes in these cells and disturbances were found; they exhibited aggregation, regional thickening, and random distribution around the nucleus and vacuole and under the cell wall. When all groups were evaluated, cells exposed to a salt concentration of 50 mM (even after 24 hours) were significantly less damaged than cells at other concentrations (100, 300, and 500 mM) at each time point. The rate of progression and spread to the whole tissue was significantly higher at 300 and 500 mM salt concentrations compared to the other groups. To reduce economic losses in salty soils, it is of great importance to fully investigate stress. The data that will emerge from our research, which is the subject of a small number of studies, will help to understand the mechanism of stress, microtubule and PCD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Caryologia
Caryologia 生物-遗传学
CiteScore
1.60
自引率
23.80%
发文量
26
审稿时长
12 months
期刊介绍: Caryologia is devoted to the publication of original papers, and occasionally of reviews, about plant, animal and human karyological, cytological, cytogenetic, embryological and ultrastructural studies. Articles about the structure, the organization and the biological events relating to DNA and chromatin organization in eukaryotic cells are considered. Caryologia has a strong tradition in plant and animal cytosystematics and in cytotoxicology. Bioinformatics articles may be considered, but only if they have an emphasis on the relationship between the nucleus and cytoplasm and/or the structural organization of the eukaryotic cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信