{"title":"矩阵的奇异值和单位不变规范不等式","authors":"Ahmad Al-Natoor, Omar Hirzallah, Fuad Kittaneh","doi":"10.1007/s43036-024-00319-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if <i>X</i>, <i>Y</i>, <i>Z</i>, <i>W</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> matrices, then </p><div><div><span>$$\\begin{aligned} s_{j}\\left( XY+ZW\\right) \\le \\textrm{max}\\left( \\left\\| Y\\right\\| ,\\left\\| Z\\right\\| \\right) s_{j}\\left( X\\oplus W\\right) +\\frac{1}{2} \\left\\| XY+ZW\\right\\| \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\begin{aligned} \\Vert XY\\pm YX\\Vert \\le \\Vert X\\Vert \\Vert Y\\Vert +w(XY) \\end{aligned}$$</span></div></div><p>for <span>\\(j=1,2,\\ldots ,n\\)</span>, where <span>\\(\\left\\| \\cdot \\right\\| ,w(\\cdot ),\\)</span> and <span>\\( s_{j}(\\cdot )\\)</span> denote the spectral norm, the numerical radius, and the <i>j</i>th singular value of matrices.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular value and unitarily invariant norm inequalities for matrices\",\"authors\":\"Ahmad Al-Natoor, Omar Hirzallah, Fuad Kittaneh\",\"doi\":\"10.1007/s43036-024-00319-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if <i>X</i>, <i>Y</i>, <i>Z</i>, <i>W</i> are <i>n</i> <span>\\\\(\\\\times \\\\)</span> <i>n</i> matrices, then </p><div><div><span>$$\\\\begin{aligned} s_{j}\\\\left( XY+ZW\\\\right) \\\\le \\\\textrm{max}\\\\left( \\\\left\\\\| Y\\\\right\\\\| ,\\\\left\\\\| Z\\\\right\\\\| \\\\right) s_{j}\\\\left( X\\\\oplus W\\\\right) +\\\\frac{1}{2} \\\\left\\\\| XY+ZW\\\\right\\\\| \\\\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\\\begin{aligned} \\\\Vert XY\\\\pm YX\\\\Vert \\\\le \\\\Vert X\\\\Vert \\\\Vert Y\\\\Vert +w(XY) \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(j=1,2,\\\\ldots ,n\\\\)</span>, where <span>\\\\(\\\\left\\\\| \\\\cdot \\\\right\\\\| ,w(\\\\cdot ),\\\\)</span> and <span>\\\\( s_{j}(\\\\cdot )\\\\)</span> denote the spectral norm, the numerical radius, and the <i>j</i>th singular value of matrices.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00319-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00319-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Singular value and unitarily invariant norm inequalities for matrices
In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if X, Y, Z, W are n\(\times \)n matrices, then
for \(j=1,2,\ldots ,n\), where \(\left\| \cdot \right\| ,w(\cdot ),\) and \( s_{j}(\cdot )\) denote the spectral norm, the numerical radius, and the jth singular value of matrices.