{"title":"使用分支和绑定方法部署次优物联网设备","authors":"Haesik Kim","doi":"10.1049/ntw2.12119","DOIUrl":null,"url":null,"abstract":"The Internet of Thing (IoT) network deployments are widely investigated in 4G and 5G systems and will still be key technical systems to drive massive connectivity of 6G systems. In 6G, IoT systems will operate with 6G new technologies such as Integrated Sensing and Communications. The IoT systems of 6G will be a platform to collect information in real world and create new use cases and business models. As the IoT devices and cellular networks are getting smarter, the IoT ecosystem allows us to bridge between human life and digital life and accelerate the transition towards a hyper‐connected world. Optimal and scalable IoT network design has been investigated in many research groups but key challenges in this topic still remain. An IoT devices deployment problem is investigated to minimise the transmission and computation cost among network nodes. The IoT devices deployment problem is formulated as Mixed‐Integer Nonlinear Programming problem. After relaxing the constraints and transforming the problem to a mixed integer linear programming (MILP) problem, the authors propose a new branch and bound (BB) method with a machine learning function and solve the MILP problem as a sub‐optimal solution. In the numerical analysis, the authors evaluate both conventional BB method and the proposed BB method with weighting factors and compare the objective function values, the number of explored nodes, and computational time. The performances of the proposed BB method are significantly improved under the given simulation configuration. The author finds the optimal mapping of IoT devices to fusion nodes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"94 5","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub‐optimal Internet of Thing devices deployment using branch and bound method\",\"authors\":\"Haesik Kim\",\"doi\":\"10.1049/ntw2.12119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Thing (IoT) network deployments are widely investigated in 4G and 5G systems and will still be key technical systems to drive massive connectivity of 6G systems. In 6G, IoT systems will operate with 6G new technologies such as Integrated Sensing and Communications. The IoT systems of 6G will be a platform to collect information in real world and create new use cases and business models. As the IoT devices and cellular networks are getting smarter, the IoT ecosystem allows us to bridge between human life and digital life and accelerate the transition towards a hyper‐connected world. Optimal and scalable IoT network design has been investigated in many research groups but key challenges in this topic still remain. An IoT devices deployment problem is investigated to minimise the transmission and computation cost among network nodes. The IoT devices deployment problem is formulated as Mixed‐Integer Nonlinear Programming problem. After relaxing the constraints and transforming the problem to a mixed integer linear programming (MILP) problem, the authors propose a new branch and bound (BB) method with a machine learning function and solve the MILP problem as a sub‐optimal solution. In the numerical analysis, the authors evaluate both conventional BB method and the proposed BB method with weighting factors and compare the objective function values, the number of explored nodes, and computational time. The performances of the proposed BB method are significantly improved under the given simulation configuration. The author finds the optimal mapping of IoT devices to fusion nodes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"94 5\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ntw2.12119\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ntw2.12119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sub‐optimal Internet of Thing devices deployment using branch and bound method
The Internet of Thing (IoT) network deployments are widely investigated in 4G and 5G systems and will still be key technical systems to drive massive connectivity of 6G systems. In 6G, IoT systems will operate with 6G new technologies such as Integrated Sensing and Communications. The IoT systems of 6G will be a platform to collect information in real world and create new use cases and business models. As the IoT devices and cellular networks are getting smarter, the IoT ecosystem allows us to bridge between human life and digital life and accelerate the transition towards a hyper‐connected world. Optimal and scalable IoT network design has been investigated in many research groups but key challenges in this topic still remain. An IoT devices deployment problem is investigated to minimise the transmission and computation cost among network nodes. The IoT devices deployment problem is formulated as Mixed‐Integer Nonlinear Programming problem. After relaxing the constraints and transforming the problem to a mixed integer linear programming (MILP) problem, the authors propose a new branch and bound (BB) method with a machine learning function and solve the MILP problem as a sub‐optimal solution. In the numerical analysis, the authors evaluate both conventional BB method and the proposed BB method with weighting factors and compare the objective function values, the number of explored nodes, and computational time. The performances of the proposed BB method are significantly improved under the given simulation configuration. The author finds the optimal mapping of IoT devices to fusion nodes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.