Niu Wang, Weidong Zhang, Yi Guo, Fan Zhang, Tongtong Zhang, Xin Wang
{"title":"HFSCARC 在羊绒山羊毛囊干细胞增殖和分化中的作用","authors":"Niu Wang, Weidong Zhang, Yi Guo, Fan Zhang, Tongtong Zhang, Xin Wang","doi":"10.1002/aro2.52","DOIUrl":null,"url":null,"abstract":"<p>As a model of regenerative medicine, hair follicle stem cell (HFSC) plays a determining role in the hair cycle. Emerging evidences showed that long noncoding RNAs regulated the biological function of HFSC. In this current study, we found that lncRNA-000552, standing for “goat secondary HFSC Associated SYNE3 Regulator of HF Cycle” (<i>HFSCARC</i>) expressed higher in anagen than that in telogen of cashmere goat. Through experiments involving nucleocytoplasmic separation and RNA-FISH, we determined that <i>HFSCARC</i> was primarily located in the nucleus of HFSC. To understand the function of <i>HFSCARC</i>, the study performed various assays, including crystal violet staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EdU, and flow cytometry analysis, which collectively revealed that <i>HFSCARC</i> inhibited HFSC proliferation. Additionally, <i>HFSCARC</i> promoted the differentiation of HFSC by investigating the expression of marker genes specific to stem cells and keratinocytes. RNA sequencing analysis was conducted to investigate the global gene expression changes associated with <i>HFSCARC</i> expression. The results showed that <i>HFSCARC</i> altered the expression of genes involved in cell proliferation, hair follicle development, and regulation of bone morphogenetic proteins (BMP) signaling. Furthermore, the study revealed that <i>HFSCARC</i> activated the BMP signaling pathway. Intriguingly, the study found a decreased expression of <i>SYNE3</i>, which was a neighboring gene of <i>HFSCARC</i>. The altered expression of genes associated with transmethylase and demethylase further suggested that <i>HFSCARC</i> might play an important role in regulating the <i>SYNE3</i> expression. Overall, this study provides valuable insights into the regulatory role of <i>HFSCARC</i> in the biological function of HFSC. These findings contribute to a better understanding of the involvement of noncoding RNAs in the regulation of hair cycle.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 2","pages":"217-229"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.52","citationCount":"0","resultStr":"{\"title\":\"Role of HFSCARC in hair follicle stem cell proliferation and differentiation in cashmere goat\",\"authors\":\"Niu Wang, Weidong Zhang, Yi Guo, Fan Zhang, Tongtong Zhang, Xin Wang\",\"doi\":\"10.1002/aro2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a model of regenerative medicine, hair follicle stem cell (HFSC) plays a determining role in the hair cycle. Emerging evidences showed that long noncoding RNAs regulated the biological function of HFSC. In this current study, we found that lncRNA-000552, standing for “goat secondary HFSC Associated SYNE3 Regulator of HF Cycle” (<i>HFSCARC</i>) expressed higher in anagen than that in telogen of cashmere goat. Through experiments involving nucleocytoplasmic separation and RNA-FISH, we determined that <i>HFSCARC</i> was primarily located in the nucleus of HFSC. To understand the function of <i>HFSCARC</i>, the study performed various assays, including crystal violet staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EdU, and flow cytometry analysis, which collectively revealed that <i>HFSCARC</i> inhibited HFSC proliferation. Additionally, <i>HFSCARC</i> promoted the differentiation of HFSC by investigating the expression of marker genes specific to stem cells and keratinocytes. RNA sequencing analysis was conducted to investigate the global gene expression changes associated with <i>HFSCARC</i> expression. The results showed that <i>HFSCARC</i> altered the expression of genes involved in cell proliferation, hair follicle development, and regulation of bone morphogenetic proteins (BMP) signaling. Furthermore, the study revealed that <i>HFSCARC</i> activated the BMP signaling pathway. Intriguingly, the study found a decreased expression of <i>SYNE3</i>, which was a neighboring gene of <i>HFSCARC</i>. The altered expression of genes associated with transmethylase and demethylase further suggested that <i>HFSCARC</i> might play an important role in regulating the <i>SYNE3</i> expression. Overall, this study provides valuable insights into the regulatory role of <i>HFSCARC</i> in the biological function of HFSC. These findings contribute to a better understanding of the involvement of noncoding RNAs in the regulation of hair cycle.</p>\",\"PeriodicalId\":100086,\"journal\":{\"name\":\"Animal Research and One Health\",\"volume\":\"2 2\",\"pages\":\"217-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.52\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Research and One Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aro2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Research and One Health","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aro2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of HFSCARC in hair follicle stem cell proliferation and differentiation in cashmere goat
As a model of regenerative medicine, hair follicle stem cell (HFSC) plays a determining role in the hair cycle. Emerging evidences showed that long noncoding RNAs regulated the biological function of HFSC. In this current study, we found that lncRNA-000552, standing for “goat secondary HFSC Associated SYNE3 Regulator of HF Cycle” (HFSCARC) expressed higher in anagen than that in telogen of cashmere goat. Through experiments involving nucleocytoplasmic separation and RNA-FISH, we determined that HFSCARC was primarily located in the nucleus of HFSC. To understand the function of HFSCARC, the study performed various assays, including crystal violet staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EdU, and flow cytometry analysis, which collectively revealed that HFSCARC inhibited HFSC proliferation. Additionally, HFSCARC promoted the differentiation of HFSC by investigating the expression of marker genes specific to stem cells and keratinocytes. RNA sequencing analysis was conducted to investigate the global gene expression changes associated with HFSCARC expression. The results showed that HFSCARC altered the expression of genes involved in cell proliferation, hair follicle development, and regulation of bone morphogenetic proteins (BMP) signaling. Furthermore, the study revealed that HFSCARC activated the BMP signaling pathway. Intriguingly, the study found a decreased expression of SYNE3, which was a neighboring gene of HFSCARC. The altered expression of genes associated with transmethylase and demethylase further suggested that HFSCARC might play an important role in regulating the SYNE3 expression. Overall, this study provides valuable insights into the regulatory role of HFSCARC in the biological function of HFSC. These findings contribute to a better understanding of the involvement of noncoding RNAs in the regulation of hair cycle.