高级陆地观测卫星(ALOS)相控阵型 L 波段合成孔径雷达(PALSAR)观测中的赤道电离层闪烁测量

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yifei Ji , Zhen Dong , Yongsheng Zhang , Feixiang Tang , Wenfei Mao , Haisheng Zhao , Zhengwen Xu , Qingjun Zhang , Bingji Zhao , Heli Gao
{"title":"高级陆地观测卫星(ALOS)相控阵型 L 波段合成孔径雷达(PALSAR)观测中的赤道电离层闪烁测量","authors":"Yifei Ji ,&nbsp;Zhen Dong ,&nbsp;Yongsheng Zhang ,&nbsp;Feixiang Tang ,&nbsp;Wenfei Mao ,&nbsp;Haisheng Zhao ,&nbsp;Zhengwen Xu ,&nbsp;Qingjun Zhang ,&nbsp;Bingji Zhao ,&nbsp;Heli Gao","doi":"10.1016/j.eng.2024.01.027","DOIUrl":null,"url":null,"abstract":"<div><div>Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR). This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications, and its formation cause, morphology, and negative influence have been deeply investigated. However, this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation. In this paper, a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed. Firstly, sublook processing is beneficial for recovering the scattered stripes from a single-look complex image; the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image. Secondly, the amplitude spectrum density function (SDF) is estimated from the amplitude stripe pattern. Thirdly, a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs. In addition, another key parameter, the scintillation index, can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index. The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes. Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines. Cross-validation is performed by comparing the PALSAR measurements with <em>in situ</em> Global Position System (GPS) measurements. The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"47 ","pages":"Pages 70-85"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite Phased Array-Type L-Band Synthetic Aperture Radar Observations\",\"authors\":\"Yifei Ji ,&nbsp;Zhen Dong ,&nbsp;Yongsheng Zhang ,&nbsp;Feixiang Tang ,&nbsp;Wenfei Mao ,&nbsp;Haisheng Zhao ,&nbsp;Zhengwen Xu ,&nbsp;Qingjun Zhang ,&nbsp;Bingji Zhao ,&nbsp;Heli Gao\",\"doi\":\"10.1016/j.eng.2024.01.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR). This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications, and its formation cause, morphology, and negative influence have been deeply investigated. However, this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation. In this paper, a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed. Firstly, sublook processing is beneficial for recovering the scattered stripes from a single-look complex image; the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image. Secondly, the amplitude spectrum density function (SDF) is estimated from the amplitude stripe pattern. Thirdly, a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs. In addition, another key parameter, the scintillation index, can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index. The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes. Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines. Cross-validation is performed by comparing the PALSAR measurements with <em>in situ</em> Global Position System (GPS) measurements. The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"47 \",\"pages\":\"Pages 70-85\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001383\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924001383","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在先进陆地观测卫星(ALOS)相控阵型l波段合成孔径雷达(PALSAR)的许多赤道夜间采集数据中,经常观测到电离层闪烁造成的振幅条纹。这种类型的电离层伪影阻碍了PALSAR干涉测量和偏振测量的应用,其形成原因、形态和负面影响已被深入研究。然而,这个人工制品可以为探测和测量电离层闪烁提供一种积极的方式。本文提出了一种利用PALSAR带振幅条纹图像测量电离层闪烁参数的方法。首先,子视处理有利于从单视复杂图像中恢复散射条纹;在子图像的频域通过带抑制滤波提取振幅条纹图。其次,根据振幅条纹图估计振幅谱密度函数(SDF);第三,给出了估算长波sdf值与理论sdf值之间的闪烁强度和光谱指数的拟合方案。此外,另一个关键参数闪烁指数可以直接从振幅条纹图中测量,也可以间接从闪烁强度和光谱指数中得出。所提出的方法在两组存在振幅条纹的PALSAR采集上得到了充分的证明。通过比较实测和推导的闪烁指数,比较距离线和方位线的测量值,进行自验证。通过将PALSAR测量结果与原位全球定位系统(GPS)测量结果进行比较,进行交叉验证。处理结果表明,该方法具有较强的空间分辨率和鲁棒性,能够从空间测量电离层闪烁参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite Phased Array-Type L-Band Synthetic Aperture Radar Observations
Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR). This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications, and its formation cause, morphology, and negative influence have been deeply investigated. However, this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation. In this paper, a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed. Firstly, sublook processing is beneficial for recovering the scattered stripes from a single-look complex image; the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image. Secondly, the amplitude spectrum density function (SDF) is estimated from the amplitude stripe pattern. Thirdly, a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs. In addition, another key parameter, the scintillation index, can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index. The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes. Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines. Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System (GPS) measurements. The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信