Wenwen Deng , Ying Zhou , Naiqi Hu , Shaocong Ni , Weihang Zhang , Chang Ming Li
{"title":"高性能二氧化硅(0","authors":"Wenwen Deng , Ying Zhou , Naiqi Hu , Shaocong Ni , Weihang Zhang , Chang Ming Li","doi":"10.1016/j.matre.2024.100270","DOIUrl":null,"url":null,"abstract":"<div><p>SiO<sub><em>x</em></sub> is attractive as an anode material for lithium-ion batteries (LIBs) due to its high capacity, low cost, and relatively higher cyclic stability than Si anode. However, the intrinsic low electronic conductivity, low initial coulombic efficiency (ICE), and volume expansion during cycles hinder its applications. In this review, we summarize advances in high performance SiO<sub><em>x</em></sub> anodes, mainly from two aspects: active material and binders. The future perspective is investigated at the end of this review. Our review provides strategical guidance for developing high performance SiO<sub><em>x</em></sub> anodes.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266693582400034X/pdfft?md5=7890fea8d981fc404d23467f5621f786&pid=1-s2.0-S266693582400034X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances of high performance SiOx(0<x<2) anodes\",\"authors\":\"Wenwen Deng , Ying Zhou , Naiqi Hu , Shaocong Ni , Weihang Zhang , Chang Ming Li\",\"doi\":\"10.1016/j.matre.2024.100270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SiO<sub><em>x</em></sub> is attractive as an anode material for lithium-ion batteries (LIBs) due to its high capacity, low cost, and relatively higher cyclic stability than Si anode. However, the intrinsic low electronic conductivity, low initial coulombic efficiency (ICE), and volume expansion during cycles hinder its applications. In this review, we summarize advances in high performance SiO<sub><em>x</em></sub> anodes, mainly from two aspects: active material and binders. The future perspective is investigated at the end of this review. Our review provides strategical guidance for developing high performance SiO<sub><em>x</em></sub> anodes.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266693582400034X/pdfft?md5=7890fea8d981fc404d23467f5621f786&pid=1-s2.0-S266693582400034X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266693582400034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266693582400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SiOx is attractive as an anode material for lithium-ion batteries (LIBs) due to its high capacity, low cost, and relatively higher cyclic stability than Si anode. However, the intrinsic low electronic conductivity, low initial coulombic efficiency (ICE), and volume expansion during cycles hinder its applications. In this review, we summarize advances in high performance SiOx anodes, mainly from two aspects: active material and binders. The future perspective is investigated at the end of this review. Our review provides strategical guidance for developing high performance SiOx anodes.