未知海洋扰动下海船的滚动预测和参数识别

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sang-Do Lee, H. Kim, S. You, Jeong-Hum Yeon, B. Phuc
{"title":"未知海洋扰动下海船的滚动预测和参数识别","authors":"Sang-Do Lee, H. Kim, S. You, Jeong-Hum Yeon, B. Phuc","doi":"10.2478/pomr-2024-0001","DOIUrl":null,"url":null,"abstract":"\n This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. This paper aims to prevent the risky roll motions of marine vessels exposed to harsh circumstances. First of all, this study demonstrates complex dynamic phenomena by utilising a bifurcation diagram, Lyapunov exponents, and a Poincare section. Without any observers, an adaptive identification applies these four parameters to the globally exponential convergence using linear second-order filters and parameter estimation errors. Then, a backstepping controller is employed to make an exponential convergence of the state variables to zero. Finally, this work presents the prediction of roll motion using reservoir computing (RC). As a result, the RC process shows good performance for chaotic time series prediction in future states. Thus, the poor predictability of Lyapunov exponents may be overcome to a certain extent, with the help of machine learning. Numerical simulations validate the dynamic behaviour and the efficacy of the proposed scheme.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roll Prediction and Parameter Identification of Marine Vessels Under Unknown Ocean Disturbances\",\"authors\":\"Sang-Do Lee, H. Kim, S. You, Jeong-Hum Yeon, B. Phuc\",\"doi\":\"10.2478/pomr-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. This paper aims to prevent the risky roll motions of marine vessels exposed to harsh circumstances. First of all, this study demonstrates complex dynamic phenomena by utilising a bifurcation diagram, Lyapunov exponents, and a Poincare section. Without any observers, an adaptive identification applies these four parameters to the globally exponential convergence using linear second-order filters and parameter estimation errors. Then, a backstepping controller is employed to make an exponential convergence of the state variables to zero. Finally, this work presents the prediction of roll motion using reservoir computing (RC). As a result, the RC process shows good performance for chaotic time series prediction in future states. Thus, the poor predictability of Lyapunov exponents may be overcome to a certain extent, with the help of machine learning. Numerical simulations validate the dynamic behaviour and the efficacy of the proposed scheme.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2024-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2024-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及两个主题:利用机器学习方法预测海洋船舶的侧倾,以及在振幅、频率、偏移和相位难以估计的情况下对未知海洋扰动进行参数估计。本文旨在防止船舶在恶劣环境下发生危险的侧倾运动。首先,本研究利用分岔图、Lyapunov 指数和 Poincare 截面展示了复杂的动态现象。在没有任何观测器的情况下,自适应识别利用线性二阶滤波器和参数估计误差将这四个参数应用于全局指数收敛。然后,采用反步控制器使状态变量指数收敛为零。最后,本作品介绍了利用水库计算(RC)预测滚动运动的方法。结果表明,RC 过程在未来状态的混沌时间序列预测方面表现良好。因此,在机器学习的帮助下,可以在一定程度上克服 Lyapunov 指数可预测性差的问题。数值模拟验证了拟议方案的动态行为和功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roll Prediction and Parameter Identification of Marine Vessels Under Unknown Ocean Disturbances
This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. This paper aims to prevent the risky roll motions of marine vessels exposed to harsh circumstances. First of all, this study demonstrates complex dynamic phenomena by utilising a bifurcation diagram, Lyapunov exponents, and a Poincare section. Without any observers, an adaptive identification applies these four parameters to the globally exponential convergence using linear second-order filters and parameter estimation errors. Then, a backstepping controller is employed to make an exponential convergence of the state variables to zero. Finally, this work presents the prediction of roll motion using reservoir computing (RC). As a result, the RC process shows good performance for chaotic time series prediction in future states. Thus, the poor predictability of Lyapunov exponents may be overcome to a certain extent, with the help of machine learning. Numerical simulations validate the dynamic behaviour and the efficacy of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信