{"title":"免疫力下降对疫苗接种决策的影响:采用进化方法分析成本和疗效的多菌株流行病模型","authors":"Md. Mamun-Ur-Rashid Khan , Jun Tanimoto","doi":"10.1016/j.idm.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we introduce a comprehensive epidemiological model that accounts for multiple strains of an infectious disease and two distinct vaccination options. Vaccination stands out as the most effective means to prevent and manage infectious diseases. However, when there are various vaccines available, each with its costs and effectiveness, the decision-making process for individuals becomes paramount. Furthermore, the factor of waning immunity following vaccination also plays a significant role in influencing these choices. To understand how individuals make decisions in the context of multiple strains and waning immunity, we employ a behavioral model, allowing an epidemiological model to be coupled with the dynamics of a decision-making process. Individuals base their choice of vaccination on factors such as the total number of infected individuals and the cost-effectiveness of the vaccine. Our findings indicate that as waning immunity increases, people tend to prioritize vaccines with higher costs and greater efficacy. Moreover, when more contagious strains are present, the equilibrium in vaccine adoption is reached more rapidly. Finally, we delve into the social dilemma inherent in our model by quantifying the social efficiency deficit (SED) under various parameter combinations.</p></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"9 3","pages":"Pages 657-672"},"PeriodicalIF":8.8000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246804272400037X/pdfft?md5=ee5c500e2684c4e22c108380d62e3295&pid=1-s2.0-S246804272400037X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of waning immunity on vaccination decision-making: A multi-strain epidemic model with an evolutionary approach analyzing cost and efficacy\",\"authors\":\"Md. Mamun-Ur-Rashid Khan , Jun Tanimoto\",\"doi\":\"10.1016/j.idm.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, we introduce a comprehensive epidemiological model that accounts for multiple strains of an infectious disease and two distinct vaccination options. Vaccination stands out as the most effective means to prevent and manage infectious diseases. However, when there are various vaccines available, each with its costs and effectiveness, the decision-making process for individuals becomes paramount. Furthermore, the factor of waning immunity following vaccination also plays a significant role in influencing these choices. To understand how individuals make decisions in the context of multiple strains and waning immunity, we employ a behavioral model, allowing an epidemiological model to be coupled with the dynamics of a decision-making process. Individuals base their choice of vaccination on factors such as the total number of infected individuals and the cost-effectiveness of the vaccine. Our findings indicate that as waning immunity increases, people tend to prioritize vaccines with higher costs and greater efficacy. Moreover, when more contagious strains are present, the equilibrium in vaccine adoption is reached more rapidly. Finally, we delve into the social dilemma inherent in our model by quantifying the social efficiency deficit (SED) under various parameter combinations.</p></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":\"9 3\",\"pages\":\"Pages 657-672\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S246804272400037X/pdfft?md5=ee5c500e2684c4e22c108380d62e3295&pid=1-s2.0-S246804272400037X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246804272400037X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246804272400037X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Influence of waning immunity on vaccination decision-making: A multi-strain epidemic model with an evolutionary approach analyzing cost and efficacy
In this research, we introduce a comprehensive epidemiological model that accounts for multiple strains of an infectious disease and two distinct vaccination options. Vaccination stands out as the most effective means to prevent and manage infectious diseases. However, when there are various vaccines available, each with its costs and effectiveness, the decision-making process for individuals becomes paramount. Furthermore, the factor of waning immunity following vaccination also plays a significant role in influencing these choices. To understand how individuals make decisions in the context of multiple strains and waning immunity, we employ a behavioral model, allowing an epidemiological model to be coupled with the dynamics of a decision-making process. Individuals base their choice of vaccination on factors such as the total number of infected individuals and the cost-effectiveness of the vaccine. Our findings indicate that as waning immunity increases, people tend to prioritize vaccines with higher costs and greater efficacy. Moreover, when more contagious strains are present, the equilibrium in vaccine adoption is reached more rapidly. Finally, we delve into the social dilemma inherent in our model by quantifying the social efficiency deficit (SED) under various parameter combinations.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.