从豚草种子中提取酯化多孔淀粉,用于增强生物活性材料的简易微囊化

IF 6.2 Q1 CHEMISTRY, APPLIED
Rukunuddin Asrafi , Yogesh Kumar , Yograj Bist , D.C. Saxena , Vijay Singh Sharanagat
{"title":"从豚草种子中提取酯化多孔淀粉,用于增强生物活性材料的简易微囊化","authors":"Rukunuddin Asrafi ,&nbsp;Yogesh Kumar ,&nbsp;Yograj Bist ,&nbsp;D.C. Saxena ,&nbsp;Vijay Singh Sharanagat","doi":"10.1016/j.carpta.2024.100490","DOIUrl":null,"url":null,"abstract":"<div><p>The present study focuses on the utilization of non-conventional starch (NS) derived from guinea grass seed to produce porous starch (PS) and octenyl succinic anhydride-modified PS (OSAPS). The study also introduces a novel approach to produce PS, aiming to overcome the high cost associated with glucoamylase. The formation of porous granules was successfully achieved through the combination of alpha-amylase and ultrasonication, as confirmed by electron micrographs and analysis of pore size and specific surface area. The results demonstrate that OSAPS exhibits superior emulsion stability, well-defined pore structures, and desirable amphiphilic characteristics. All three starches were loaded with lycopene, flaxseed oil, and a combination of both to prepare microcapsules. The presence of flaxseed oil within the starch matrix was confirmed through micrographs and functional group analysis. Notably, OSAPS exhibited the highest encapsulation efficiency at 74.80 %, along with a lycopene retention rate of up to 27.32 mg/100 g. Moreover, OSAPS showcased favorable antioxidant activity (89.29 %), phenolic content (0.45 mg GAE/g), and flavonoid content (97.61 mg QE/100 g). These findings underscore the remarkable potential of OSAPS as a delivery system for bioactive compounds, particularly for the co-encapsulation of oils and pigments.</p></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"7 ","pages":"Article 100490"},"PeriodicalIF":6.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666893924000707/pdfft?md5=4e37a1cd2925e61b7439560731c432d1&pid=1-s2.0-S2666893924000707-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Esterified porous starch from guinea grass seed for enhanced facile microencapsulation of bioactive materials\",\"authors\":\"Rukunuddin Asrafi ,&nbsp;Yogesh Kumar ,&nbsp;Yograj Bist ,&nbsp;D.C. Saxena ,&nbsp;Vijay Singh Sharanagat\",\"doi\":\"10.1016/j.carpta.2024.100490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study focuses on the utilization of non-conventional starch (NS) derived from guinea grass seed to produce porous starch (PS) and octenyl succinic anhydride-modified PS (OSAPS). The study also introduces a novel approach to produce PS, aiming to overcome the high cost associated with glucoamylase. The formation of porous granules was successfully achieved through the combination of alpha-amylase and ultrasonication, as confirmed by electron micrographs and analysis of pore size and specific surface area. The results demonstrate that OSAPS exhibits superior emulsion stability, well-defined pore structures, and desirable amphiphilic characteristics. All three starches were loaded with lycopene, flaxseed oil, and a combination of both to prepare microcapsules. The presence of flaxseed oil within the starch matrix was confirmed through micrographs and functional group analysis. Notably, OSAPS exhibited the highest encapsulation efficiency at 74.80 %, along with a lycopene retention rate of up to 27.32 mg/100 g. Moreover, OSAPS showcased favorable antioxidant activity (89.29 %), phenolic content (0.45 mg GAE/g), and flavonoid content (97.61 mg QE/100 g). These findings underscore the remarkable potential of OSAPS as a delivery system for bioactive compounds, particularly for the co-encapsulation of oils and pigments.</p></div>\",\"PeriodicalId\":100213,\"journal\":{\"name\":\"Carbohydrate Polymer Technologies and Applications\",\"volume\":\"7 \",\"pages\":\"Article 100490\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666893924000707/pdfft?md5=4e37a1cd2925e61b7439560731c432d1&pid=1-s2.0-S2666893924000707-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymer Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666893924000707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用从豚草种子中提取的非常规淀粉(NS)生产多孔淀粉(PS)和辛烯基丁二酸酐改性 PS(OSAPS)。该研究还介绍了一种生产 PS 的新方法,旨在克服与葡萄糖淀粉酶相关的高成本问题。通过结合使用α-淀粉酶和超声波处理,成功地形成了多孔颗粒,电子显微照片和孔径及比表面积分析证实了这一点。结果表明,OSAPS 具有出色的乳液稳定性、明确的孔隙结构和理想的两亲特性。在制备微胶囊时,对所有三种淀粉都添加了番茄红素、亚麻籽油以及二者的组合。通过显微照片和官能团分析,确认了淀粉基质中亚麻籽油的存在。值得注意的是,OSAPS 的封装效率最高,达到 74.80%,番茄红素保留率高达 27.32 mg/100g。此外,OSAPS 还具有良好的抗氧化活性(89.29%)、酚含量(0.45 mg GAE/g)和类黄酮含量(97.61 mg QE/100 g)。这些发现凸显了 OSAPS 作为生物活性化合物输送系统的巨大潜力,特别是在油脂和色素的共同封装方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Esterified porous starch from guinea grass seed for enhanced facile microencapsulation of bioactive materials

Esterified porous starch from guinea grass seed for enhanced facile microencapsulation of bioactive materials

The present study focuses on the utilization of non-conventional starch (NS) derived from guinea grass seed to produce porous starch (PS) and octenyl succinic anhydride-modified PS (OSAPS). The study also introduces a novel approach to produce PS, aiming to overcome the high cost associated with glucoamylase. The formation of porous granules was successfully achieved through the combination of alpha-amylase and ultrasonication, as confirmed by electron micrographs and analysis of pore size and specific surface area. The results demonstrate that OSAPS exhibits superior emulsion stability, well-defined pore structures, and desirable amphiphilic characteristics. All three starches were loaded with lycopene, flaxseed oil, and a combination of both to prepare microcapsules. The presence of flaxseed oil within the starch matrix was confirmed through micrographs and functional group analysis. Notably, OSAPS exhibited the highest encapsulation efficiency at 74.80 %, along with a lycopene retention rate of up to 27.32 mg/100 g. Moreover, OSAPS showcased favorable antioxidant activity (89.29 %), phenolic content (0.45 mg GAE/g), and flavonoid content (97.61 mg QE/100 g). These findings underscore the remarkable potential of OSAPS as a delivery system for bioactive compounds, particularly for the co-encapsulation of oils and pigments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信