{"title":"纳米金属氧化物添加剂对富 MICs 硼燃料点火和燃烧特性的影响","authors":"","doi":"10.1016/j.dt.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Boron has been considered a promising powdered metal fuel for enhancing composite propellants' energy output due to its high energy density. However, the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer. Much research is ongoing to overcome these shortcomings, and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron. This study prepared boron-rich fuels with 10 wt% of eight nano-metal oxide additives by mechanical ball milling. The effect of metal oxides on the thermo-oxidation, ignition, and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis (TG), the electrically heated filament setup (T-jump), and the laser-induced combustion experiments. TG experiments at 5 K/min found that Bi<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and CuO can promote thermo-oxidation of boron. Compared to pure boron, <em>T</em><sub>onset</sub> can be reduced from 569 °C to a minimum of 449 °C (B/Bi<sub>2</sub>O<sub>3</sub>). Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s, the ignition temperatures of B/Bi<sub>2</sub>O<sub>3</sub> are the lowest, even lower than the melting point of boron oxide. Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state. Fuels (B/Bi<sub>2</sub>O<sub>3</sub>, B/MoO<sub>3</sub>, and B/CuO) were mixed with the oxidant AP and ignited by laser to study the combustion performance. The results showed that B/CuO/AP has the largest flame area, the highest BO<sub>2</sub> characteristic spectral intensity, and the largest burn rate for powder lines. To combine the advantages of CuO and Bi<sub>2</sub>O<sub>3</sub>, binary metal oxide (CBO, mass ratio of 3:1) was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron. Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives. It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive. These findings contribute to the development of boron-rich fuels and their application in propellants.</p></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"39 ","pages":"Pages 157-167"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214914724000709/pdfft?md5=ac7a8a195794169daae35608be2b6e83&pid=1-s2.0-S2214914724000709-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of nano-metal oxide additives on ignition and combustion properties of MICs-boron rich fuels\",\"authors\":\"\",\"doi\":\"10.1016/j.dt.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boron has been considered a promising powdered metal fuel for enhancing composite propellants' energy output due to its high energy density. However, the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer. Much research is ongoing to overcome these shortcomings, and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron. This study prepared boron-rich fuels with 10 wt% of eight nano-metal oxide additives by mechanical ball milling. The effect of metal oxides on the thermo-oxidation, ignition, and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis (TG), the electrically heated filament setup (T-jump), and the laser-induced combustion experiments. TG experiments at 5 K/min found that Bi<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and CuO can promote thermo-oxidation of boron. Compared to pure boron, <em>T</em><sub>onset</sub> can be reduced from 569 °C to a minimum of 449 °C (B/Bi<sub>2</sub>O<sub>3</sub>). Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s, the ignition temperatures of B/Bi<sub>2</sub>O<sub>3</sub> are the lowest, even lower than the melting point of boron oxide. Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state. Fuels (B/Bi<sub>2</sub>O<sub>3</sub>, B/MoO<sub>3</sub>, and B/CuO) were mixed with the oxidant AP and ignited by laser to study the combustion performance. The results showed that B/CuO/AP has the largest flame area, the highest BO<sub>2</sub> characteristic spectral intensity, and the largest burn rate for powder lines. To combine the advantages of CuO and Bi<sub>2</sub>O<sub>3</sub>, binary metal oxide (CBO, mass ratio of 3:1) was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron. Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives. It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive. These findings contribute to the development of boron-rich fuels and their application in propellants.</p></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"39 \",\"pages\":\"Pages 157-167\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214914724000709/pdfft?md5=ac7a8a195794169daae35608be2b6e83&pid=1-s2.0-S2214914724000709-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724000709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724000709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of nano-metal oxide additives on ignition and combustion properties of MICs-boron rich fuels
Boron has been considered a promising powdered metal fuel for enhancing composite propellants' energy output due to its high energy density. However, the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer. Much research is ongoing to overcome these shortcomings, and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron. This study prepared boron-rich fuels with 10 wt% of eight nano-metal oxide additives by mechanical ball milling. The effect of metal oxides on the thermo-oxidation, ignition, and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis (TG), the electrically heated filament setup (T-jump), and the laser-induced combustion experiments. TG experiments at 5 K/min found that Bi2O3, MoO3, TiO2, Fe2O3, and CuO can promote thermo-oxidation of boron. Compared to pure boron, Tonset can be reduced from 569 °C to a minimum of 449 °C (B/Bi2O3). Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s, the ignition temperatures of B/Bi2O3 are the lowest, even lower than the melting point of boron oxide. Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state. Fuels (B/Bi2O3, B/MoO3, and B/CuO) were mixed with the oxidant AP and ignited by laser to study the combustion performance. The results showed that B/CuO/AP has the largest flame area, the highest BO2 characteristic spectral intensity, and the largest burn rate for powder lines. To combine the advantages of CuO and Bi2O3, binary metal oxide (CBO, mass ratio of 3:1) was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron. Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives. It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive. These findings contribute to the development of boron-rich fuels and their application in propellants.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.