揭示铁-铬氧化还原液流电池电解质中 Cr3+ 的配位行为和转化机制

Xiaojun Zhao , Xinwei Niu , Xinyuan Liu , Chongchong Wu , Xinyu Duan , Zhiqi Ma , Yan Xu , Hao Li , Weijie Yang
{"title":"揭示铁-铬氧化还原液流电池电解质中 Cr3+ 的配位行为和转化机制","authors":"Xiaojun Zhao ,&nbsp;Xinwei Niu ,&nbsp;Xinyuan Liu ,&nbsp;Chongchong Wu ,&nbsp;Xinyu Duan ,&nbsp;Zhiqi Ma ,&nbsp;Yan Xu ,&nbsp;Hao Li ,&nbsp;Weijie Yang","doi":"10.1016/j.matre.2024.100271","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, the iron chromium redox flow battery (ICRFB) has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up. However, the activity of electrolyte is still ambiguous due to its complicated solution environment. Herein, we performed a pioneering investigation on the coordination behavior and transformation mechanism of Cr<sup>3+</sup> in electrolyte and prediction of impurity ions impact through quantum chemistry computations. Based on the structure and symmetry of electrostatic potential distribution, the activity of different Cr<sup>3+</sup> complex ions is confirmed as [Cr(H<sub>2</sub>O)<sub>5</sub>Cl]<sup>2+</sup> &gt; [Cr(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup> &gt; [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>. The transformation mechanism between [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> and [Cr(H<sub>2</sub>O)<sub>5</sub>Cl]<sup>2+</sup> is revealed. We find the metal impurity ions (especially Mg<sup>2+</sup>) can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from [Cr(H<sub>2</sub>O)<sub>5</sub>Cl]<sup>2+</sup> (24.38 kcal mol<sup>−1</sup>) to [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> (16.23 kcal mol<sup>−1</sup>). The solvent radial distribution and mean square displacement in different solvent environments are discussed and we conclude that the coordination configuration limits the diffusivity of Cr<sup>3+</sup>. This work provides new insights into the activity of electrolyte, laying a fundamental sense for the electrolyte in ICRFB.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000351/pdfft?md5=9104e846422c7f7b37e3e254dfdfe55a&pid=1-s2.0-S2666935824000351-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unraveling the coordination behavior and transformation mechanism of Cr3+ in Fe–Cr redox flow battery electrolytes\",\"authors\":\"Xiaojun Zhao ,&nbsp;Xinwei Niu ,&nbsp;Xinyuan Liu ,&nbsp;Chongchong Wu ,&nbsp;Xinyu Duan ,&nbsp;Zhiqi Ma ,&nbsp;Yan Xu ,&nbsp;Hao Li ,&nbsp;Weijie Yang\",\"doi\":\"10.1016/j.matre.2024.100271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, the iron chromium redox flow battery (ICRFB) has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up. However, the activity of electrolyte is still ambiguous due to its complicated solution environment. Herein, we performed a pioneering investigation on the coordination behavior and transformation mechanism of Cr<sup>3+</sup> in electrolyte and prediction of impurity ions impact through quantum chemistry computations. Based on the structure and symmetry of electrostatic potential distribution, the activity of different Cr<sup>3+</sup> complex ions is confirmed as [Cr(H<sub>2</sub>O)<sub>5</sub>Cl]<sup>2+</sup> &gt; [Cr(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup> &gt; [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>. The transformation mechanism between [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> and [Cr(H<sub>2</sub>O)<sub>5</sub>Cl]<sup>2+</sup> is revealed. We find the metal impurity ions (especially Mg<sup>2+</sup>) can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from [Cr(H<sub>2</sub>O)<sub>5</sub>Cl]<sup>2+</sup> (24.38 kcal mol<sup>−1</sup>) to [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> (16.23 kcal mol<sup>−1</sup>). The solvent radial distribution and mean square displacement in different solvent environments are discussed and we conclude that the coordination configuration limits the diffusivity of Cr<sup>3+</sup>. This work provides new insights into the activity of electrolyte, laying a fundamental sense for the electrolyte in ICRFB.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000351/pdfft?md5=9104e846422c7f7b37e3e254dfdfe55a&pid=1-s2.0-S2666935824000351-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,铁铬氧化还原液流电池(ICRFB)因其成本低、易于规模化生产而成为储能领域的研究热点。然而,由于其复杂的溶液环境,电解质的活性仍不明确。在此,我们开创性地研究了 Cr3+ 在电解质中的配位行为和转化机制,并通过量子化学计算预测了杂质离子的影响。根据静电位分布的结构和对称性,确定了[Cr(H2O)5Cl]2+ >;[Cr(H2O)4Cl2]+ >;[Cr(H2O)6]3+等不同Cr3+配合离子的活性。揭示了 [Cr(H2O)6]3+ 和 [Cr(H2O)5Cl]2+ 之间的转化机制。我们发现金属杂质离子(尤其是 Mg2+)会降低从 [Cr(H2O)5Cl]2+ (24.38 kcal mol-1)到 [Cr(H2O)6]3+ (16.23 kcal mol-1)的转化能垒,从而加剧电解质失活。我们讨论了不同溶剂环境中的溶剂径向分布和均方位移,并得出结论:配位限制了 Cr3+ 的扩散性。这项研究为了解电解质的活性提供了新的视角,为 ICRFB 中的电解质奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the coordination behavior and transformation mechanism of Cr3+ in Fe–Cr redox flow battery electrolytes

Unraveling the coordination behavior and transformation mechanism of Cr3+ in Fe–Cr redox flow battery electrolytes

Currently, the iron chromium redox flow battery (ICRFB) has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up. However, the activity of electrolyte is still ambiguous due to its complicated solution environment. Herein, we performed a pioneering investigation on the coordination behavior and transformation mechanism of Cr3+ in electrolyte and prediction of impurity ions impact through quantum chemistry computations. Based on the structure and symmetry of electrostatic potential distribution, the activity of different Cr3+ complex ions is confirmed as [Cr(H2O)5Cl]2+ > [Cr(H2O)4Cl2]+ > [Cr(H2O)6]3+. The transformation mechanism between [Cr(H2O)6]3+ and [Cr(H2O)5Cl]2+ is revealed. We find the metal impurity ions (especially Mg2+) can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from [Cr(H2O)5Cl]2+ (24.38 kcal mol−1) to [Cr(H2O)6]3+ (16.23 kcal mol−1). The solvent radial distribution and mean square displacement in different solvent environments are discussed and we conclude that the coordination configuration limits the diffusivity of Cr3+. This work provides new insights into the activity of electrolyte, laying a fundamental sense for the electrolyte in ICRFB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信