Tajweed Neairat , Mahmoud Al-Gawati , Qura Tul Ain , Abdulaziz K. Assaifan , Aws Alshamsan , Abdulaziz Alarifi , Abdullah N. Alodhayb , Khalid E. Alzahrani , Hamad Albrithen
{"title":"开发基于微悬臂的生物传感器,用于检测程序死亡配体 1","authors":"Tajweed Neairat , Mahmoud Al-Gawati , Qura Tul Ain , Abdulaziz K. Assaifan , Aws Alshamsan , Abdulaziz Alarifi , Abdullah N. Alodhayb , Khalid E. Alzahrani , Hamad Albrithen","doi":"10.1016/j.jsps.2024.102051","DOIUrl":null,"url":null,"abstract":"<div><p>The ongoing global concern of cancer worldwide necessitates the development of advanced diagnostic and therapeutic strategies. The majority of recent detection strategies involve the employment of biomarkers. A critical biomarker for cancer immunotherapy efficacy and patient prognosis is Programmed Death Ligand 1 (PD-L1), which is a key immune checkpoint protein. PD-L1 can be particularly linked to cancer progression and therapy response. Current detection methods, such as enzyme-linked immunosorbent assay (ELISA), face limitations like high cost, time consumption, and complexity. This study introduces a microcantilever-based biosensor designed for the detection of soluble PD-L1 (sPD-L1), which has a specific association with PD-L1. The biosensor utilizes anti-PD-L1 as the sensing layer, capitalizing on the specific binding affinity between anti-PD-L1 and sPD-L1. The presence of the sensing layer was confirmed through Atomic Force Microscopy (AFM) and contact angle measurements. Binding between sPD-L1 and anti-PD-L1 induces a shift in the microcantilever's resonance frequency, which is proportional to the PD-L1 concentration. Notably, the resonance frequency shift demonstrates a robust linear relationship with the increasing biomarker concentration, ranging from 0.05 ng/ml to 500 ng/ml. The detection limit of the biosensor was determined to be approximately 10 pg/ml. The biosensor demonstrates excellent performance in detecting PD-L1 with high specificity even in complex biological matrices. This innovative approach not only provides a promising tool for early cancer diagnosis but also holds potential for monitoring immunotherapy efficacy, paving the way for personalized and effective cancer treatments.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 6","pages":"Article 102051"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001014/pdfft?md5=9a9920e1071c3e8ea606c233c54aa887&pid=1-s2.0-S1319016424001014-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a microcantilever-based biosensor for detecting Programmed Death Ligand 1\",\"authors\":\"Tajweed Neairat , Mahmoud Al-Gawati , Qura Tul Ain , Abdulaziz K. Assaifan , Aws Alshamsan , Abdulaziz Alarifi , Abdullah N. Alodhayb , Khalid E. Alzahrani , Hamad Albrithen\",\"doi\":\"10.1016/j.jsps.2024.102051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ongoing global concern of cancer worldwide necessitates the development of advanced diagnostic and therapeutic strategies. The majority of recent detection strategies involve the employment of biomarkers. A critical biomarker for cancer immunotherapy efficacy and patient prognosis is Programmed Death Ligand 1 (PD-L1), which is a key immune checkpoint protein. PD-L1 can be particularly linked to cancer progression and therapy response. Current detection methods, such as enzyme-linked immunosorbent assay (ELISA), face limitations like high cost, time consumption, and complexity. This study introduces a microcantilever-based biosensor designed for the detection of soluble PD-L1 (sPD-L1), which has a specific association with PD-L1. The biosensor utilizes anti-PD-L1 as the sensing layer, capitalizing on the specific binding affinity between anti-PD-L1 and sPD-L1. The presence of the sensing layer was confirmed through Atomic Force Microscopy (AFM) and contact angle measurements. Binding between sPD-L1 and anti-PD-L1 induces a shift in the microcantilever's resonance frequency, which is proportional to the PD-L1 concentration. Notably, the resonance frequency shift demonstrates a robust linear relationship with the increasing biomarker concentration, ranging from 0.05 ng/ml to 500 ng/ml. The detection limit of the biosensor was determined to be approximately 10 pg/ml. The biosensor demonstrates excellent performance in detecting PD-L1 with high specificity even in complex biological matrices. This innovative approach not only provides a promising tool for early cancer diagnosis but also holds potential for monitoring immunotherapy efficacy, paving the way for personalized and effective cancer treatments.</p></div>\",\"PeriodicalId\":49257,\"journal\":{\"name\":\"Saudi Pharmaceutical Journal\",\"volume\":\"32 6\",\"pages\":\"Article 102051\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319016424001014/pdfft?md5=9a9920e1071c3e8ea606c233c54aa887&pid=1-s2.0-S1319016424001014-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Pharmaceutical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319016424001014\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Pharmaceutical Journal","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319016424001014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Development of a microcantilever-based biosensor for detecting Programmed Death Ligand 1
The ongoing global concern of cancer worldwide necessitates the development of advanced diagnostic and therapeutic strategies. The majority of recent detection strategies involve the employment of biomarkers. A critical biomarker for cancer immunotherapy efficacy and patient prognosis is Programmed Death Ligand 1 (PD-L1), which is a key immune checkpoint protein. PD-L1 can be particularly linked to cancer progression and therapy response. Current detection methods, such as enzyme-linked immunosorbent assay (ELISA), face limitations like high cost, time consumption, and complexity. This study introduces a microcantilever-based biosensor designed for the detection of soluble PD-L1 (sPD-L1), which has a specific association with PD-L1. The biosensor utilizes anti-PD-L1 as the sensing layer, capitalizing on the specific binding affinity between anti-PD-L1 and sPD-L1. The presence of the sensing layer was confirmed through Atomic Force Microscopy (AFM) and contact angle measurements. Binding between sPD-L1 and anti-PD-L1 induces a shift in the microcantilever's resonance frequency, which is proportional to the PD-L1 concentration. Notably, the resonance frequency shift demonstrates a robust linear relationship with the increasing biomarker concentration, ranging from 0.05 ng/ml to 500 ng/ml. The detection limit of the biosensor was determined to be approximately 10 pg/ml. The biosensor demonstrates excellent performance in detecting PD-L1 with high specificity even in complex biological matrices. This innovative approach not only provides a promising tool for early cancer diagnosis but also holds potential for monitoring immunotherapy efficacy, paving the way for personalized and effective cancer treatments.
期刊介绍:
The Saudi Pharmaceutical Journal (SPJ) is the official journal of the Saudi Pharmaceutical Society (SPS) publishing high quality clinically oriented submissions which encompass the various disciplines of pharmaceutical sciences and related subjects. SPJ publishes 8 issues per year by the Saudi Pharmaceutical Society, with the cooperation of the College of Pharmacy, King Saud University.