Xiaonan Liu , Thomas J. Littlejohns , Jelena Bešević , Fiona Bragg , Lei Clifton , Jennifer A. Collister , Eirini Trichia , Laura J. Gray , Kamlesh Khunti , David J. Hunter
{"title":"将多基因风险纳入莱斯特风险评估评分,预测 2 型糖尿病的 10 年风险","authors":"Xiaonan Liu , Thomas J. Littlejohns , Jelena Bešević , Fiona Bragg , Lei Clifton , Jennifer A. Collister , Eirini Trichia , Laura J. Gray , Kamlesh Khunti , David J. Hunter","doi":"10.1016/j.dsx.2024.102996","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><p>We evaluated whether incorporating information on ethnic background and polygenic risk enhanced the Leicester Risk Assessment (LRA<em>)</em> score for predicting 10-year risk of type 2 diabetes.</p></div><div><h3>Methods</h3><p>The sample included 202,529 UK Biobank participants aged 40–69 years. We computed the <em>LRA score</em>, and developed two new risk scores using training data (80% sample): <em>LRArev</em>, which incorporated additional information on ethnic background, and <em>LRAprs</em>, which incorporated polygenic risk for type 2 diabetes. We assessed discriminative and reclassification performance in a test set (20% sample). Type 2 diabetes was ascertained using primary care, hospital inpatient and death registry records.</p></div><div><h3>Results</h3><p>Over 10 years, 7,476 participants developed type 2 diabetes. The Harrell's C indexes were 0.796 (95% Confidence Interval [CI] 0.785, 0.806), 0.802 (95% CI 0.792, 0.813), and 0.829 (95% CI 0.820, 0.839) for the <em>LRA</em>, <em>LRArev</em> and <em>LRAprs</em> scores, respectively. The <em>LRAprs</em> score significantly improved the overall reclassification compared to the <em>LRA</em> (net reclassification index [NRI] = 0.033, 95% CI 0.015, 0.049) and <em>LRArev</em> (NRI = 0.040, 95% CI 0.024, 0.055) <em>scores</em>.</p></div><div><h3>Conclusions</h3><p>Polygenic risk moderately improved the performance of the existing <em>LRA score</em> for 10-year risk prediction of type 2 diabetes.</p></div>","PeriodicalId":48252,"journal":{"name":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","volume":"18 4","pages":"Article 102996"},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1871402124000572/pdfft?md5=9424f3ac9af33735a2cee24ff4916bd4&pid=1-s2.0-S1871402124000572-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Incorporating polygenic risk into the Leicester Risk Assessment score for 10-year risk prediction of type 2 diabetes\",\"authors\":\"Xiaonan Liu , Thomas J. Littlejohns , Jelena Bešević , Fiona Bragg , Lei Clifton , Jennifer A. Collister , Eirini Trichia , Laura J. Gray , Kamlesh Khunti , David J. Hunter\",\"doi\":\"10.1016/j.dsx.2024.102996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><p>We evaluated whether incorporating information on ethnic background and polygenic risk enhanced the Leicester Risk Assessment (LRA<em>)</em> score for predicting 10-year risk of type 2 diabetes.</p></div><div><h3>Methods</h3><p>The sample included 202,529 UK Biobank participants aged 40–69 years. We computed the <em>LRA score</em>, and developed two new risk scores using training data (80% sample): <em>LRArev</em>, which incorporated additional information on ethnic background, and <em>LRAprs</em>, which incorporated polygenic risk for type 2 diabetes. We assessed discriminative and reclassification performance in a test set (20% sample). Type 2 diabetes was ascertained using primary care, hospital inpatient and death registry records.</p></div><div><h3>Results</h3><p>Over 10 years, 7,476 participants developed type 2 diabetes. The Harrell's C indexes were 0.796 (95% Confidence Interval [CI] 0.785, 0.806), 0.802 (95% CI 0.792, 0.813), and 0.829 (95% CI 0.820, 0.839) for the <em>LRA</em>, <em>LRArev</em> and <em>LRAprs</em> scores, respectively. The <em>LRAprs</em> score significantly improved the overall reclassification compared to the <em>LRA</em> (net reclassification index [NRI] = 0.033, 95% CI 0.015, 0.049) and <em>LRArev</em> (NRI = 0.040, 95% CI 0.024, 0.055) <em>scores</em>.</p></div><div><h3>Conclusions</h3><p>Polygenic risk moderately improved the performance of the existing <em>LRA score</em> for 10-year risk prediction of type 2 diabetes.</p></div>\",\"PeriodicalId\":48252,\"journal\":{\"name\":\"Diabetes & Metabolic Syndrome-Clinical Research & Reviews\",\"volume\":\"18 4\",\"pages\":\"Article 102996\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1871402124000572/pdfft?md5=9424f3ac9af33735a2cee24ff4916bd4&pid=1-s2.0-S1871402124000572-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Metabolic Syndrome-Clinical Research & Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871402124000572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871402124000572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
目的我们评估了纳入种族背景和多基因风险信息是否会提高莱斯特风险评估(LRA)预测 2 型糖尿病 10 年风险的得分。方法样本包括 202,529 名年龄在 40-69 岁之间的英国生物库参与者。我们计算了 LRA 评分,并利用训练数据(80% 的样本)开发了两种新的风险评分:LRArev 包含种族背景的附加信息,LRAprs 包含 2 型糖尿病的多基因风险。我们评估了测试集(20% 样本)的判别和再分类性能。2 型糖尿病是通过初级保健、医院住院病人和死亡登记记录确定的。LRA、LRArev 和 LRAprs 评分的哈雷尔 C 指数分别为 0.796(95% 置信区间 [CI] 0.785,0.806)、0.802(95% CI 0.792,0.813)和 0.829(95% CI 0.820,0.839)。与 LRA(净再分类指数 [NRI] = 0.033,95% CI 0.015,0.049)和 LRArev(净再分类指数 [NRI] = 0.040,95% CI 0.024,0.055)相比,LRAprs 评分明显改善了总体再分类效果。
Incorporating polygenic risk into the Leicester Risk Assessment score for 10-year risk prediction of type 2 diabetes
Aims
We evaluated whether incorporating information on ethnic background and polygenic risk enhanced the Leicester Risk Assessment (LRA) score for predicting 10-year risk of type 2 diabetes.
Methods
The sample included 202,529 UK Biobank participants aged 40–69 years. We computed the LRA score, and developed two new risk scores using training data (80% sample): LRArev, which incorporated additional information on ethnic background, and LRAprs, which incorporated polygenic risk for type 2 diabetes. We assessed discriminative and reclassification performance in a test set (20% sample). Type 2 diabetes was ascertained using primary care, hospital inpatient and death registry records.
Results
Over 10 years, 7,476 participants developed type 2 diabetes. The Harrell's C indexes were 0.796 (95% Confidence Interval [CI] 0.785, 0.806), 0.802 (95% CI 0.792, 0.813), and 0.829 (95% CI 0.820, 0.839) for the LRA, LRArev and LRAprs scores, respectively. The LRAprs score significantly improved the overall reclassification compared to the LRA (net reclassification index [NRI] = 0.033, 95% CI 0.015, 0.049) and LRArev (NRI = 0.040, 95% CI 0.024, 0.055) scores.
Conclusions
Polygenic risk moderately improved the performance of the existing LRA score for 10-year risk prediction of type 2 diabetes.
期刊介绍:
Diabetes and Metabolic Syndrome: Clinical Research and Reviews is the official journal of DiabetesIndia. It aims to provide a global platform for healthcare professionals, diabetes educators, and other stakeholders to submit their research on diabetes care.
Types of Publications:
Diabetes and Metabolic Syndrome: Clinical Research and Reviews publishes peer-reviewed original articles, reviews, short communications, case reports, letters to the Editor, and expert comments. Reviews and mini-reviews are particularly welcomed for areas within endocrinology undergoing rapid changes.