Jianwen Liu , Guodong Fu , Yuanfeng Liao , Wangji Zhang , Xiuan Xi , Fengzhan Si , Lei Wang , Jiujun Zhang , Xian-Zhu Fu , Jing-Li Luo
{"title":"电化学将小分子有机物转化为高附加值化学品和氢气/电力而不排放二氧化碳:电催化剂、装置和机制","authors":"Jianwen Liu , Guodong Fu , Yuanfeng Liao , Wangji Zhang , Xiuan Xi , Fengzhan Si , Lei Wang , Jiujun Zhang , Xian-Zhu Fu , Jing-Li Luo","doi":"10.1016/j.esci.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><div>The electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO<sub>2</sub> emissions integrates efficient energy conversions (hydrogen energy or electricity) and value-added chemical productions in one reaction system, which is essentially competitive in the carbon-neutral era. However, the activity, stability, and cost-effectiveness of electrocatalysts, as well as the safety, durability, and scalability of devices, are still challenging for their industrial applications. In addition, a lack of knowledge about relevant and detailed mechanisms restricts the further development of electrocatalysts and devices. A timely review of the electrocatalysts, devices, and mechanisms is essential to shed lights on the correct direction towards further development. In this review, the advances in the design of electrocatalysts, fabrication of devices, and understanding of reaction mechanisms are comprehensively summarized and analyzed. The major challenges are also discussed as well as the potential approaches to overcoming them. The insights for further development are provided to offer a sustainable and environmentally friendly approach to cogeneration of energy and chemicals production.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100267"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: Electrocatalysts, devices and mechanisms\",\"authors\":\"Jianwen Liu , Guodong Fu , Yuanfeng Liao , Wangji Zhang , Xiuan Xi , Fengzhan Si , Lei Wang , Jiujun Zhang , Xian-Zhu Fu , Jing-Li Luo\",\"doi\":\"10.1016/j.esci.2024.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO<sub>2</sub> emissions integrates efficient energy conversions (hydrogen energy or electricity) and value-added chemical productions in one reaction system, which is essentially competitive in the carbon-neutral era. However, the activity, stability, and cost-effectiveness of electrocatalysts, as well as the safety, durability, and scalability of devices, are still challenging for their industrial applications. In addition, a lack of knowledge about relevant and detailed mechanisms restricts the further development of electrocatalysts and devices. A timely review of the electrocatalysts, devices, and mechanisms is essential to shed lights on the correct direction towards further development. In this review, the advances in the design of electrocatalysts, fabrication of devices, and understanding of reaction mechanisms are comprehensively summarized and analyzed. The major challenges are also discussed as well as the potential approaches to overcoming them. The insights for further development are provided to offer a sustainable and environmentally friendly approach to cogeneration of energy and chemicals production.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 1\",\"pages\":\"Article 100267\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266714172400051X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172400051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: Electrocatalysts, devices and mechanisms
The electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emissions integrates efficient energy conversions (hydrogen energy or electricity) and value-added chemical productions in one reaction system, which is essentially competitive in the carbon-neutral era. However, the activity, stability, and cost-effectiveness of electrocatalysts, as well as the safety, durability, and scalability of devices, are still challenging for their industrial applications. In addition, a lack of knowledge about relevant and detailed mechanisms restricts the further development of electrocatalysts and devices. A timely review of the electrocatalysts, devices, and mechanisms is essential to shed lights on the correct direction towards further development. In this review, the advances in the design of electrocatalysts, fabrication of devices, and understanding of reaction mechanisms are comprehensively summarized and analyzed. The major challenges are also discussed as well as the potential approaches to overcoming them. The insights for further development are provided to offer a sustainable and environmentally friendly approach to cogeneration of energy and chemicals production.