Youling Jiang , Yan Ma , Jun Zheng , Nan Ye , Cheng Yuan
{"title":"长江三角洲南京地区气溶胶吸湿性和液态水含量的粒度分辨特征","authors":"Youling Jiang , Yan Ma , Jun Zheng , Nan Ye , Cheng Yuan","doi":"10.1016/j.jes.2024.03.035","DOIUrl":null,"url":null,"abstract":"<div><p>Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (<em>GF</em>) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the <em>GF</em>-derived hygroscopicity parameter (<em>κ<sub>gf</sub></em>) and ALWC increased with particle size, but displayed differing diurnal variations, with <em>κ<sub>gf</sub></em> peaking around the midday, while ALWC peaking in the early morning. Nitrate, ammonium and oxygenated organic aerosols (OOA) were found as the chemical components mostly strongly correlated with ALWC. A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods, the <em>κ</em> of organic aerosols (<em>κ<sub>org</sub></em>) was underestimated when using previous parameterizations. Accordingly, we re-constructed parameterizations for <em>κ<sub>org</sub></em> and the oxidation level of organics for these periods, which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA, yet both being much higher than the generally assumed OOA hygroscopicity. Additionally, in a typical high ALWC episode, concurrently increased ALWC, nitrate, OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH. This strongly indicates a coupled effect that the hygroscopic secondary aerosols, in particular nitrate with strong hygroscopicity, led to large increase in ALWC, which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions. Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of size-resolved aerosol hygroscopicity and liquid water content in Nanjing of the Yangtze River Delta\",\"authors\":\"Youling Jiang , Yan Ma , Jun Zheng , Nan Ye , Cheng Yuan\",\"doi\":\"10.1016/j.jes.2024.03.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (<em>GF</em>) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the <em>GF</em>-derived hygroscopicity parameter (<em>κ<sub>gf</sub></em>) and ALWC increased with particle size, but displayed differing diurnal variations, with <em>κ<sub>gf</sub></em> peaking around the midday, while ALWC peaking in the early morning. Nitrate, ammonium and oxygenated organic aerosols (OOA) were found as the chemical components mostly strongly correlated with ALWC. A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods, the <em>κ</em> of organic aerosols (<em>κ<sub>org</sub></em>) was underestimated when using previous parameterizations. Accordingly, we re-constructed parameterizations for <em>κ<sub>org</sub></em> and the oxidation level of organics for these periods, which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA, yet both being much higher than the generally assumed OOA hygroscopicity. Additionally, in a typical high ALWC episode, concurrently increased ALWC, nitrate, OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH. This strongly indicates a coupled effect that the hygroscopic secondary aerosols, in particular nitrate with strong hygroscopicity, led to large increase in ALWC, which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions. Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224001529\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224001529","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterization of size-resolved aerosol hygroscopicity and liquid water content in Nanjing of the Yangtze River Delta
Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (GF) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the GF-derived hygroscopicity parameter (κgf) and ALWC increased with particle size, but displayed differing diurnal variations, with κgf peaking around the midday, while ALWC peaking in the early morning. Nitrate, ammonium and oxygenated organic aerosols (OOA) were found as the chemical components mostly strongly correlated with ALWC. A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods, the κ of organic aerosols (κorg) was underestimated when using previous parameterizations. Accordingly, we re-constructed parameterizations for κorg and the oxidation level of organics for these periods, which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA, yet both being much higher than the generally assumed OOA hygroscopicity. Additionally, in a typical high ALWC episode, concurrently increased ALWC, nitrate, OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH. This strongly indicates a coupled effect that the hygroscopic secondary aerosols, in particular nitrate with strong hygroscopicity, led to large increase in ALWC, which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions. Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.