利用低成本、可生物降解和可持续压电纳米纤维膜的自充电和长期面罩

IF 9.9 2区 材料科学 Q1 Engineering
Zhenqi Wang , Zhuomin Zhang , Zehua Peng , Xiaodan Yang , Xuemu Li , Yao Shan , Bingren Liu , Xiaote Xu , Yongsheng Gao , Zhengbao Yang
{"title":"利用低成本、可生物降解和可持续压电纳米纤维膜的自充电和长期面罩","authors":"Zhenqi Wang ,&nbsp;Zhuomin Zhang ,&nbsp;Zehua Peng ,&nbsp;Xiaodan Yang ,&nbsp;Xuemu Li ,&nbsp;Yao Shan ,&nbsp;Bingren Liu ,&nbsp;Xiaote Xu ,&nbsp;Yongsheng Gao ,&nbsp;Zhengbao Yang","doi":"10.1016/j.nanoms.2024.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic. To reduce waste and minimize environmental impact, we present a new face mask featuring self-charging extended service time and fully biodegradable materials. To extend the effective service time, we need to supplement the lost electric charge of the electret layer of face masks, for which task we propose to use the piezoelectric effect and generate electricity from breathing motions. However, existing piezoelectric materials are either toxic, impermeable, rigid, costly, or non-degradable. We synthesize a fully biodegradable piezoelectric membrane composed of polyvinyl alcohol (PVA) and glycine (GLY) via the electrospinning process. Parameters are accurately controlled to ensure that glycine crystallizes into a highly piezoelectric β phase during electrospinning and enables piezoelectric responses of the filter membrane. Tested with the standard 0.3 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> particles, face masks made of the PVA-GLY membrane show an outstanding filtration efficiency of 97%, which remains stable over at least 10 ​h of high-concentration continuous filtration. Furthermore, we demonstrated the biodegradability of PVA-GLY masks, which can degrade completely within a few weeks, compared to commonly used surgical masks requiring over thirty years to be decomposed.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 1","pages":"Pages 113-122"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-charging and long-term face masks leveraging low-cost, biodegradable and sustainable piezoelectric nanofiber membrane\",\"authors\":\"Zhenqi Wang ,&nbsp;Zhuomin Zhang ,&nbsp;Zehua Peng ,&nbsp;Xiaodan Yang ,&nbsp;Xuemu Li ,&nbsp;Yao Shan ,&nbsp;Bingren Liu ,&nbsp;Xiaote Xu ,&nbsp;Yongsheng Gao ,&nbsp;Zhengbao Yang\",\"doi\":\"10.1016/j.nanoms.2024.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic. To reduce waste and minimize environmental impact, we present a new face mask featuring self-charging extended service time and fully biodegradable materials. To extend the effective service time, we need to supplement the lost electric charge of the electret layer of face masks, for which task we propose to use the piezoelectric effect and generate electricity from breathing motions. However, existing piezoelectric materials are either toxic, impermeable, rigid, costly, or non-degradable. We synthesize a fully biodegradable piezoelectric membrane composed of polyvinyl alcohol (PVA) and glycine (GLY) via the electrospinning process. Parameters are accurately controlled to ensure that glycine crystallizes into a highly piezoelectric β phase during electrospinning and enables piezoelectric responses of the filter membrane. Tested with the standard 0.3 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> particles, face masks made of the PVA-GLY membrane show an outstanding filtration efficiency of 97%, which remains stable over at least 10 ​h of high-concentration continuous filtration. Furthermore, we demonstrated the biodegradability of PVA-GLY masks, which can degrade completely within a few weeks, compared to commonly used surgical masks requiring over thirty years to be decomposed.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"7 1\",\"pages\":\"Pages 113-122\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124000254\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000254","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-charging and long-term face masks leveraging low-cost, biodegradable and sustainable piezoelectric nanofiber membrane
The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic. To reduce waste and minimize environmental impact, we present a new face mask featuring self-charging extended service time and fully biodegradable materials. To extend the effective service time, we need to supplement the lost electric charge of the electret layer of face masks, for which task we propose to use the piezoelectric effect and generate electricity from breathing motions. However, existing piezoelectric materials are either toxic, impermeable, rigid, costly, or non-degradable. We synthesize a fully biodegradable piezoelectric membrane composed of polyvinyl alcohol (PVA) and glycine (GLY) via the electrospinning process. Parameters are accurately controlled to ensure that glycine crystallizes into a highly piezoelectric β phase during electrospinning and enables piezoelectric responses of the filter membrane. Tested with the standard 0.3 μm particles, face masks made of the PVA-GLY membrane show an outstanding filtration efficiency of 97%, which remains stable over at least 10 ​h of high-concentration continuous filtration. Furthermore, we demonstrated the biodegradability of PVA-GLY masks, which can degrade completely within a few weeks, compared to commonly used surgical masks requiring over thirty years to be decomposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信