Kateřina Sovová , Petra Vašíčková , Vojtěch Valášek , David Výravský , Věra Očenášková , Eva Juranová , Milena Bušová , Milan Tuček , Vladimír Bencko , Hana Zvěřinová Mlejnková
{"title":"捷克共和国的 SARS-CoV-2 废水监测:SARS-CoV-2 RNA 浓度的时空差异以及与临床数据和废水参数的关系","authors":"Kateřina Sovová , Petra Vašíčková , Vojtěch Valášek , David Výravský , Věra Očenášková , Eva Juranová , Milena Bušová , Milan Tuček , Vladimír Bencko , Hana Zvěřinová Mlejnková","doi":"10.1016/j.wroa.2024.100220","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020–2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID‐19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000100/pdfft?md5=fe260961c94e9cdda264278fe48888fc&pid=1-s2.0-S2589914724000100-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters\",\"authors\":\"Kateřina Sovová , Petra Vašíčková , Vojtěch Valášek , David Výravský , Věra Očenášková , Eva Juranová , Milena Bušová , Milan Tuček , Vladimír Bencko , Hana Zvěřinová Mlejnková\",\"doi\":\"10.1016/j.wroa.2024.100220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020–2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID‐19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.</p></div>\",\"PeriodicalId\":52198,\"journal\":{\"name\":\"Water Research X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589914724000100/pdfft?md5=fe260961c94e9cdda264278fe48888fc&pid=1-s2.0-S2589914724000100-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research X\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589914724000100\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000100","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters
This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020–2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID‐19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.