Rebecca J. Duncan , Janne E. Søreide , Øystein Varpe , Józef Wiktor , Vanessa Pitusi , Elaine Runge , Katherina Petrou
{"title":"北极陆快海冰中微藻群落的时空动态","authors":"Rebecca J. Duncan , Janne E. Søreide , Øystein Varpe , Józef Wiktor , Vanessa Pitusi , Elaine Runge , Katherina Petrou","doi":"10.1016/j.pocean.2024.103248","DOIUrl":null,"url":null,"abstract":"<div><p>Sea ice microalgae are an important source of energy for the polar marine food web, representing the primary carbon source prior to pelagic phytoplankton blooms. Here we investigate community dynamics of sea ice microalgal communities in land-fast sea ice across six different fjords in high-Arctic Svalbard, Norway, during Spring (April – May). We found that light (0.1 – 23% incoming PAR / 0.1 – 193 μmol photons m<sup>-2</sup>s<sup>-1</sup>) played a central role in determining community composition, with more diverse assemblages observed in sites with more light transmitted to the bottom ice community. In April, microalgal assemblages were similar when under-ice light transmittance was similar, independent of geographical location, however this light-derived separation of community structure was not evident in May. At all sites, assemblages were dominated by pennate diatoms, with the most abundant taxon being <em>Nitzschia frigida</em>. However, with increasing under-ice light transmittance, we saw an increase in the relative abundance of Dinophyceae, <em>Navicula</em> spp. and <em>Thalassiosira</em> spp.. A positive relationship between light and δ<sup>13</sup>C enrichment and C:N ratios in the ice algal biomass demonstrated the effect of light on the biochemical composition of ice algae. Light did not correlate with cell abundance or chlorophyll <em>a</em> concentration. With anticipated changes to Arctic sea ice extent and snow cover as a result of climate change, we will see shifts in the light transmitted to the bottom ice community. These shifts, whether caused by reduced light transmittance from increased snow cover or increased light transmittance from thinning ice, snow depth or increased rainfall, will likely alter sea ice microalgal community composition, which in turn, may influence the success of secondary production and biogeochemical cycling in polar waters.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"224 ","pages":"Article 103248"},"PeriodicalIF":3.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124000545/pdfft?md5=c9ffdbb57cf98f04965b0fbdaf7f15b4&pid=1-s2.0-S0079661124000545-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal dynamics in microalgal communities in Arctic land-fast sea ice\",\"authors\":\"Rebecca J. Duncan , Janne E. Søreide , Øystein Varpe , Józef Wiktor , Vanessa Pitusi , Elaine Runge , Katherina Petrou\",\"doi\":\"10.1016/j.pocean.2024.103248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea ice microalgae are an important source of energy for the polar marine food web, representing the primary carbon source prior to pelagic phytoplankton blooms. Here we investigate community dynamics of sea ice microalgal communities in land-fast sea ice across six different fjords in high-Arctic Svalbard, Norway, during Spring (April – May). We found that light (0.1 – 23% incoming PAR / 0.1 – 193 μmol photons m<sup>-2</sup>s<sup>-1</sup>) played a central role in determining community composition, with more diverse assemblages observed in sites with more light transmitted to the bottom ice community. In April, microalgal assemblages were similar when under-ice light transmittance was similar, independent of geographical location, however this light-derived separation of community structure was not evident in May. At all sites, assemblages were dominated by pennate diatoms, with the most abundant taxon being <em>Nitzschia frigida</em>. However, with increasing under-ice light transmittance, we saw an increase in the relative abundance of Dinophyceae, <em>Navicula</em> spp. and <em>Thalassiosira</em> spp.. A positive relationship between light and δ<sup>13</sup>C enrichment and C:N ratios in the ice algal biomass demonstrated the effect of light on the biochemical composition of ice algae. Light did not correlate with cell abundance or chlorophyll <em>a</em> concentration. With anticipated changes to Arctic sea ice extent and snow cover as a result of climate change, we will see shifts in the light transmitted to the bottom ice community. These shifts, whether caused by reduced light transmittance from increased snow cover or increased light transmittance from thinning ice, snow depth or increased rainfall, will likely alter sea ice microalgal community composition, which in turn, may influence the success of secondary production and biogeochemical cycling in polar waters.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"224 \",\"pages\":\"Article 103248\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079661124000545/pdfft?md5=c9ffdbb57cf98f04965b0fbdaf7f15b4&pid=1-s2.0-S0079661124000545-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124000545\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124000545","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Spatio-temporal dynamics in microalgal communities in Arctic land-fast sea ice
Sea ice microalgae are an important source of energy for the polar marine food web, representing the primary carbon source prior to pelagic phytoplankton blooms. Here we investigate community dynamics of sea ice microalgal communities in land-fast sea ice across six different fjords in high-Arctic Svalbard, Norway, during Spring (April – May). We found that light (0.1 – 23% incoming PAR / 0.1 – 193 μmol photons m-2s-1) played a central role in determining community composition, with more diverse assemblages observed in sites with more light transmitted to the bottom ice community. In April, microalgal assemblages were similar when under-ice light transmittance was similar, independent of geographical location, however this light-derived separation of community structure was not evident in May. At all sites, assemblages were dominated by pennate diatoms, with the most abundant taxon being Nitzschia frigida. However, with increasing under-ice light transmittance, we saw an increase in the relative abundance of Dinophyceae, Navicula spp. and Thalassiosira spp.. A positive relationship between light and δ13C enrichment and C:N ratios in the ice algal biomass demonstrated the effect of light on the biochemical composition of ice algae. Light did not correlate with cell abundance or chlorophyll a concentration. With anticipated changes to Arctic sea ice extent and snow cover as a result of climate change, we will see shifts in the light transmitted to the bottom ice community. These shifts, whether caused by reduced light transmittance from increased snow cover or increased light transmittance from thinning ice, snow depth or increased rainfall, will likely alter sea ice microalgal community composition, which in turn, may influence the success of secondary production and biogeochemical cycling in polar waters.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.