Huijun Zuo, Hou Lu, Peng Sun, Jun Qiu, Fangfang Li
{"title":"气候变化对中国光伏发电输出变异性的影响:多模式集合平均值分析","authors":"Huijun Zuo, Hou Lu, Peng Sun, Jun Qiu, Fangfang Li","doi":"10.1063/5.0189613","DOIUrl":null,"url":null,"abstract":"Solar photovoltaic (PV) power plays a crucial role in mitigating climate change. However, climate change may amplify weather variability and extreme conditions. The extreme conditions can increase the very low PV output and thereby increase the need for grid stabilization services. This study examined how weather variability affects PV power output in the near- (2025–2054) and far-future (2071–2100). The ensemble mean calculated using seven global climate models participating in the coupled model intercomparison project phase 6 for three different shared socioeconomic pathways (SSPs) (SSP126, SSP245, SSP585) was used for the assessment. The standard deviation of the monthly PV power output and the share of very low monthly PV power output were used to assess the variability of PV power output. The findings indicate that the summer PV power output was projected to decrease by 6%–8% in central and northern Tibet under a high emissions scenario (SSP585). The summer months with low PV power output were projected to increase in western regions of China, known for its abundant solar resources. The findings of this study provide valuable insight for energy planners to make up for the influence of future weather variability.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in photovoltaic power output variability due to climate change in China: A multi-model ensemble mean analysis\",\"authors\":\"Huijun Zuo, Hou Lu, Peng Sun, Jun Qiu, Fangfang Li\",\"doi\":\"10.1063/5.0189613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar photovoltaic (PV) power plays a crucial role in mitigating climate change. However, climate change may amplify weather variability and extreme conditions. The extreme conditions can increase the very low PV output and thereby increase the need for grid stabilization services. This study examined how weather variability affects PV power output in the near- (2025–2054) and far-future (2071–2100). The ensemble mean calculated using seven global climate models participating in the coupled model intercomparison project phase 6 for three different shared socioeconomic pathways (SSPs) (SSP126, SSP245, SSP585) was used for the assessment. The standard deviation of the monthly PV power output and the share of very low monthly PV power output were used to assess the variability of PV power output. The findings indicate that the summer PV power output was projected to decrease by 6%–8% in central and northern Tibet under a high emissions scenario (SSP585). The summer months with low PV power output were projected to increase in western regions of China, known for its abundant solar resources. The findings of this study provide valuable insight for energy planners to make up for the influence of future weather variability.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0189613\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0189613","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Changes in photovoltaic power output variability due to climate change in China: A multi-model ensemble mean analysis
Solar photovoltaic (PV) power plays a crucial role in mitigating climate change. However, climate change may amplify weather variability and extreme conditions. The extreme conditions can increase the very low PV output and thereby increase the need for grid stabilization services. This study examined how weather variability affects PV power output in the near- (2025–2054) and far-future (2071–2100). The ensemble mean calculated using seven global climate models participating in the coupled model intercomparison project phase 6 for three different shared socioeconomic pathways (SSPs) (SSP126, SSP245, SSP585) was used for the assessment. The standard deviation of the monthly PV power output and the share of very low monthly PV power output were used to assess the variability of PV power output. The findings indicate that the summer PV power output was projected to decrease by 6%–8% in central and northern Tibet under a high emissions scenario (SSP585). The summer months with low PV power output were projected to increase in western regions of China, known for its abundant solar resources. The findings of this study provide valuable insight for energy planners to make up for the influence of future weather variability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.