{"title":"从芯片上的肝脏了解肝脏再生","authors":"Martí Ortega-Ribera","doi":"10.1016/j.cobme.2024.100533","DOIUrl":null,"url":null,"abstract":"<div><p>Organ on a chip, or in the context of liver, liver-on-a-chip or LoC, are recently in the lookout for being bioengineered tools preserving the <em>in vivo</em> cell features and recapitulating the complexity of liver physiology in a controlled microfluidic environment. In the recent years, LoC have been tailored at several levels including biological input, matrix and mechanobiological cues or additional design features such as patterned cultures, multi-organ chips or sensor integration. Latest research in LoC designs include the integration of mechanobiological cues and recapitulation of the most common liver disease etiologies (alcohol associated liver disease, MAFLD or viral infection), enhancing LoC value for hepatotoxicity testing, drug discovery and research. Liver regeneration is a common physiological response to diverse injuries to the liver. In this review, we summarize the latest findings learned from LoC to understand liver regeneration, focusing on the role of transcription growth factor beta (TGFβ), hepatocyte growth factor (HGF) and hypoxia inducible factor 1 alpha (HIF-1α) as key players in the regenerative response by regulating fibrosis, EMT, proliferation and inflammation among others.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning about liver regeneration from liver-on-a-chip\",\"authors\":\"Martí Ortega-Ribera\",\"doi\":\"10.1016/j.cobme.2024.100533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organ on a chip, or in the context of liver, liver-on-a-chip or LoC, are recently in the lookout for being bioengineered tools preserving the <em>in vivo</em> cell features and recapitulating the complexity of liver physiology in a controlled microfluidic environment. In the recent years, LoC have been tailored at several levels including biological input, matrix and mechanobiological cues or additional design features such as patterned cultures, multi-organ chips or sensor integration. Latest research in LoC designs include the integration of mechanobiological cues and recapitulation of the most common liver disease etiologies (alcohol associated liver disease, MAFLD or viral infection), enhancing LoC value for hepatotoxicity testing, drug discovery and research. Liver regeneration is a common physiological response to diverse injuries to the liver. In this review, we summarize the latest findings learned from LoC to understand liver regeneration, focusing on the role of transcription growth factor beta (TGFβ), hepatocyte growth factor (HGF) and hypoxia inducible factor 1 alpha (HIF-1α) as key players in the regenerative response by regulating fibrosis, EMT, proliferation and inflammation among others.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451124000138\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000138","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
芯片上的器官,或就肝脏而言,芯片上的肝脏或 LoC,最近正被视为一种生物工程工具,可在受控微流控环境中保留体内细胞特征并重现复杂的肝脏生理学。近年来,LoC 在多个层面上进行了定制,包括生物输入、基质和机械生物学线索或其他设计特征,如模式化培养、多器官芯片或传感器集成。LoC 设计方面的最新研究包括整合机械生物学线索和重现最常见的肝病病因(酒精相关肝病、MAFLD 或病毒感染),从而提高 LoC 在肝毒性测试、药物发现和研究方面的价值。肝脏再生是对肝脏各种损伤的常见生理反应。在这篇综述中,我们总结了从 LoC 了解肝脏再生的最新发现,重点是转录生长因子β(TGFβ)、肝细胞生长因子(HGF)和缺氧诱导因子 1α(HIF-1α)通过调节纤维化、EMT、增殖和炎症等在再生反应中的关键作用。
Learning about liver regeneration from liver-on-a-chip
Organ on a chip, or in the context of liver, liver-on-a-chip or LoC, are recently in the lookout for being bioengineered tools preserving the in vivo cell features and recapitulating the complexity of liver physiology in a controlled microfluidic environment. In the recent years, LoC have been tailored at several levels including biological input, matrix and mechanobiological cues or additional design features such as patterned cultures, multi-organ chips or sensor integration. Latest research in LoC designs include the integration of mechanobiological cues and recapitulation of the most common liver disease etiologies (alcohol associated liver disease, MAFLD or viral infection), enhancing LoC value for hepatotoxicity testing, drug discovery and research. Liver regeneration is a common physiological response to diverse injuries to the liver. In this review, we summarize the latest findings learned from LoC to understand liver regeneration, focusing on the role of transcription growth factor beta (TGFβ), hepatocyte growth factor (HGF) and hypoxia inducible factor 1 alpha (HIF-1α) as key players in the regenerative response by regulating fibrosis, EMT, proliferation and inflammation among others.