Xiao Jia , Yingchi Mao , Zhenxiang Pan , Zicheng Wang , Ping Ping
{"title":"通过关系网络进行基于分层特征融合的少拍学习","authors":"Xiao Jia , Yingchi Mao , Zhenxiang Pan , Zicheng Wang , Ping Ping","doi":"10.1016/j.ijar.2024.109186","DOIUrl":null,"url":null,"abstract":"<div><p>Few-shot learning, which aims to identify new classes with few samples, is an increasingly popular and crucial research topic in the machine learning. Recently, the development of deep learning has deepened the network structure of a few-shot model, thereby obtaining deeper features from the samples. This trend led to an increasing number of few-shot learning models pursuing more complex structures and deeper features. However, discarding shallow features and blindly pursuing the depth of sample feature levels is not reasonable. The features at different levels of the sample have different information and characteristics. In this paper, we propose a few-shot image classification model based on deep and shallow feature fusion and a coarse-grained relationship score network (HFFCR). First, we utilize networks with different depth structures as feature extractors and then fuse the two kinds of sample features. The fused sample features collect sample information at different levels. Second, we condense the fused features into a coarse-grained prototype point. Prototype points can better represent the information in this class and improve classification efficiency. Finally, we construct a relationship score network, concatenating the prototype points and query samples into a feature map and sending it into the network to calculate the relationship score. The classification criteria for learnable relationship scores reflect the information difference between the two samples. Experiments on three datasets show that HFFCR has advanced performance.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"170 ","pages":"Article 109186"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-shot learning based on hierarchical feature fusion via relation networks\",\"authors\":\"Xiao Jia , Yingchi Mao , Zhenxiang Pan , Zicheng Wang , Ping Ping\",\"doi\":\"10.1016/j.ijar.2024.109186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Few-shot learning, which aims to identify new classes with few samples, is an increasingly popular and crucial research topic in the machine learning. Recently, the development of deep learning has deepened the network structure of a few-shot model, thereby obtaining deeper features from the samples. This trend led to an increasing number of few-shot learning models pursuing more complex structures and deeper features. However, discarding shallow features and blindly pursuing the depth of sample feature levels is not reasonable. The features at different levels of the sample have different information and characteristics. In this paper, we propose a few-shot image classification model based on deep and shallow feature fusion and a coarse-grained relationship score network (HFFCR). First, we utilize networks with different depth structures as feature extractors and then fuse the two kinds of sample features. The fused sample features collect sample information at different levels. Second, we condense the fused features into a coarse-grained prototype point. Prototype points can better represent the information in this class and improve classification efficiency. Finally, we construct a relationship score network, concatenating the prototype points and query samples into a feature map and sending it into the network to calculate the relationship score. The classification criteria for learnable relationship scores reflect the information difference between the two samples. Experiments on three datasets show that HFFCR has advanced performance.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"170 \",\"pages\":\"Article 109186\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000732\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000732","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Few-shot learning based on hierarchical feature fusion via relation networks
Few-shot learning, which aims to identify new classes with few samples, is an increasingly popular and crucial research topic in the machine learning. Recently, the development of deep learning has deepened the network structure of a few-shot model, thereby obtaining deeper features from the samples. This trend led to an increasing number of few-shot learning models pursuing more complex structures and deeper features. However, discarding shallow features and blindly pursuing the depth of sample feature levels is not reasonable. The features at different levels of the sample have different information and characteristics. In this paper, we propose a few-shot image classification model based on deep and shallow feature fusion and a coarse-grained relationship score network (HFFCR). First, we utilize networks with different depth structures as feature extractors and then fuse the two kinds of sample features. The fused sample features collect sample information at different levels. Second, we condense the fused features into a coarse-grained prototype point. Prototype points can better represent the information in this class and improve classification efficiency. Finally, we construct a relationship score network, concatenating the prototype points and query samples into a feature map and sending it into the network to calculate the relationship score. The classification criteria for learnable relationship scores reflect the information difference between the two samples. Experiments on three datasets show that HFFCR has advanced performance.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.