Norbert Sigiel, Marcin Chodnicki, Paweł Socik, Rafał Kot
{"title":"基于深度学习神经网络(DLNNS)的未爆弹药(UXO)自动分类技术","authors":"Norbert Sigiel, Marcin Chodnicki, Paweł Socik, Rafał Kot","doi":"10.2478/pomr-2024-0008","DOIUrl":null,"url":null,"abstract":"\n This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the burden on the technical operator and reduce post-mission analysis time. This article describes a target classification solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis during underwater reconnaissance operations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Classification of Unexploded Ordnance (UXO) Based on Deep Learning Neural Networks (DLNNS)\",\"authors\":\"Norbert Sigiel, Marcin Chodnicki, Paweł Socik, Rafał Kot\",\"doi\":\"10.2478/pomr-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the burden on the technical operator and reduce post-mission analysis time. This article describes a target classification solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis during underwater reconnaissance operations.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2024-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2024-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Automatic Classification of Unexploded Ordnance (UXO) Based on Deep Learning Neural Networks (DLNNS)
This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the burden on the technical operator and reduce post-mission analysis time. This article describes a target classification solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis during underwater reconnaissance operations.