基于深度学习神经网络(DLNNS)的未爆弹药(UXO)自动分类技术

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Norbert Sigiel, Marcin Chodnicki, Paweł Socik, Rafał Kot
{"title":"基于深度学习神经网络(DLNNS)的未爆弹药(UXO)自动分类技术","authors":"Norbert Sigiel, Marcin Chodnicki, Paweł Socik, Rafał Kot","doi":"10.2478/pomr-2024-0008","DOIUrl":null,"url":null,"abstract":"\n This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the burden on the technical operator and reduce post-mission analysis time. This article describes a target classification solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis during underwater reconnaissance operations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Classification of Unexploded Ordnance (UXO) Based on Deep Learning Neural Networks (DLNNS)\",\"authors\":\"Norbert Sigiel, Marcin Chodnicki, Paweł Socik, Rafał Kot\",\"doi\":\"10.2478/pomr-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the burden on the technical operator and reduce post-mission analysis time. This article describes a target classification solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis during underwater reconnaissance operations.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2024-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2024-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论使用深度学习神经网络 (DLNN) 作为一种工具,通过对未爆弹药 (UXO) 物体对航运构成的潜在威胁进行分类来提高海事安全。未爆弹药对海事用户构成巨大威胁,因此世界各地的海军和非政府组织(NGOs)都在使用专用的先进技术来应对这一威胁。各国海军采取的措施包括反水雷装置(MCMV)和猎雷技术,后者依靠声纳图像探测危险物体并对其进行分类。现代猎雷技术一般分为三个阶段:探测和分类、识别和失效/处置。探测和分类阶段通常使用安装在船体或水下航行器上的声纳。目前,加强使用合成孔径声纳(SAS)等更先进技术收集高分辨率数据的趋势非常明显。收集到声纳数据后,军事人员会检查海底图像,以探测目标并将其分类为类似地雷的物体(MILCO)或不类似地雷的物体(NON-MILCO)。计算机辅助探测 (CAD)、计算机辅助分类 (CAC) 和自动目标识别 (ATR) 算法已被引入,以减轻技术操作人员的负担并减少任务后的分析时间。本文介绍了一种使用基于 DLNN 方法的目标分类解决方案,该方案可显著减少水下侦察行动中任务后数据分析所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Classification of Unexploded Ordnance (UXO) Based on Deep Learning Neural Networks (DLNNS)
This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the burden on the technical operator and reduce post-mission analysis time. This article describes a target classification solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis during underwater reconnaissance operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信